Loading…

A new two-stage method for revealing missing parts of edges in protein-protein interaction networks

With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have be...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-05, Vol.12 (5), p.e0177029-e0177029
Main Authors: Zhang, Wei, Xu, Jia, Li, Yuanyuan, Zou, Xiufen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-8599756d4773dcca267acdf45eae1b6ac0993311d7b2c9f6022208644bffee3e3
cites cdi_FETCH-LOGICAL-c692t-8599756d4773dcca267acdf45eae1b6ac0993311d7b2c9f6022208644bffee3e3
container_end_page e0177029
container_issue 5
container_start_page e0177029
container_title PloS one
container_volume 12
creator Zhang, Wei
Xu, Jia
Li, Yuanyuan
Zou, Xiufen
description With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have been significantly hindered. In this paper, we propose a two stage method to predict underlying links between two originally unlinked protein pairs. First, we measure gene expression and gene functional similarly between unlinked protein pairs on Saccharomyces cerevisiae benchmark network and obtain new constructed networks. Then, we select the significant part of the new predicted links by analyzing the difference between essential proteins that have been identified based on the new constructed networks and the original network. Furthermore, we validate the performance of the new method by using the reliable and comprehensive PPI dataset obtained from the STRING database and compare the new proposed method with four other random walk-based methods. Comparing the results indicates that the new proposed strategy performs well in predicting underlying links. This study provides a general paradigm for predicting new interactions between protein pairs and offers new insights into identifying essential proteins.
doi_str_mv 10.1371/journal.pone.0177029
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1898010439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491534936</galeid><doaj_id>oai_doaj_org_article_eb5eaba9a22d429b9d50cce67e216829</doaj_id><sourcerecordid>A491534936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8599756d4773dcca267acdf45eae1b6ac0993311d7b2c9f6022208644bffee3e3</originalsourceid><addsrcrecordid>eNqNk1tr1EAUx4Motla_gWhAEH3IOrdMMi_CUrwsFAreXofJ5CQ7azYTZyatfnsn3bRspA-ShxNOfud_cm5J8hyjFaYFfrezo-tVtxpsDyuEiwIR8SA5xYKSjBNEHx69nyRPvN8hlNOS88fJCSmZoAKj00Sv0x6u03BtMx9UC-kewtbWaWNd6uAKVGf6Nt0b7yc7KBd8apsU6hZ8avp0cDaA6bPZRlcAp3Qwto_CUdb99E-TR43qPDyb7Vny_eOHb-efs4vLT5vz9UWmuSAhK3MhipzXrChorbUivFC6blgOCnDFlUZCUIpxXVREi4YjQggqOWNV0wBQoGfJy4Pu0Fkv5_54iUtRIowYFZHYHIjaqp0cnNkr90daZeSNw7pWxgqN7kBCFfNWSihCakZEJeocaQ28AIJ5SSat93O2sdpDraEPTnUL0eWX3mxla69kzgjnLI8Cb2YBZ3-N4IOMbdbQdaoHO978dxxRXtAyoq_-Qe-vbqZaFQswfWNjXj2JyjUTOKdx6DxSq3uo-NSwNzouU2OifxHwdhEQmQC_Q6tG7-Xm65f_Zy9_LNnXR-w2rlrYetuN0-74JcgOoHbWewfNXZMxktMt3HZDTrcg51uIYS-OB3QXdLv89C_3tQVJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898010439</pqid></control><display><type>article</type><title>A new two-stage method for revealing missing parts of edges in protein-protein interaction networks</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhang, Wei ; Xu, Jia ; Li, Yuanyuan ; Zou, Xiufen</creator><contributor>Schreiber, Gideon</contributor><creatorcontrib>Zhang, Wei ; Xu, Jia ; Li, Yuanyuan ; Zou, Xiufen ; Schreiber, Gideon</creatorcontrib><description>With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have been significantly hindered. In this paper, we propose a two stage method to predict underlying links between two originally unlinked protein pairs. First, we measure gene expression and gene functional similarly between unlinked protein pairs on Saccharomyces cerevisiae benchmark network and obtain new constructed networks. Then, we select the significant part of the new predicted links by analyzing the difference between essential proteins that have been identified based on the new constructed networks and the original network. Furthermore, we validate the performance of the new method by using the reliable and comprehensive PPI dataset obtained from the STRING database and compare the new proposed method with four other random walk-based methods. Comparing the results indicates that the new proposed strategy performs well in predicting underlying links. This study provides a general paradigm for predicting new interactions between protein pairs and offers new insights into identifying essential proteins.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0177029</identifier><identifier>PMID: 28493910</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Algorithms ; Augmented reality ; Bioinformatics ; Biological computing ; Biological properties ; Biology and Life Sciences ; Computation ; Computer and Information Sciences ; Computer applications ; Consortia ; Construction ; Correlation coefficient ; Data mining ; Data processing ; Engineering ; Eukaryotes ; Gene expression ; Gene Expression Regulation, Fungal ; Genes ; Genetics ; Genomes ; Genomics - methods ; Homology ; Identification methods ; Information dissemination ; Knowledge representation ; Links ; Methods ; Modules ; Nodes ; Nucleic acids ; Ontology ; Phylogeny ; Physical Sciences ; Physiological aspects ; Predictions ; Probability theory ; Prokaryotes ; Protein interaction ; Protein Interaction Mapping - methods ; Protein Interaction Maps ; Protein purification ; Protein structure ; Protein-protein interactions ; Proteins ; Research and Analysis Methods ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Semantics ; Social interactions ; Social organization ; Statistical analysis ; Technology ; Topology</subject><ispartof>PloS one, 2017-05, Vol.12 (5), p.e0177029-e0177029</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Zhang et al 2017 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8599756d4773dcca267acdf45eae1b6ac0993311d7b2c9f6022208644bffee3e3</citedby><cites>FETCH-LOGICAL-c692t-8599756d4773dcca267acdf45eae1b6ac0993311d7b2c9f6022208644bffee3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898010439/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898010439?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28493910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schreiber, Gideon</contributor><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xu, Jia</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zou, Xiufen</creatorcontrib><title>A new two-stage method for revealing missing parts of edges in protein-protein interaction networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have been significantly hindered. In this paper, we propose a two stage method to predict underlying links between two originally unlinked protein pairs. First, we measure gene expression and gene functional similarly between unlinked protein pairs on Saccharomyces cerevisiae benchmark network and obtain new constructed networks. Then, we select the significant part of the new predicted links by analyzing the difference between essential proteins that have been identified based on the new constructed networks and the original network. Furthermore, we validate the performance of the new method by using the reliable and comprehensive PPI dataset obtained from the STRING database and compare the new proposed method with four other random walk-based methods. Comparing the results indicates that the new proposed strategy performs well in predicting underlying links. This study provides a general paradigm for predicting new interactions between protein pairs and offers new insights into identifying essential proteins.</description><subject>Affinity</subject><subject>Algorithms</subject><subject>Augmented reality</subject><subject>Bioinformatics</subject><subject>Biological computing</subject><subject>Biological properties</subject><subject>Biology and Life Sciences</subject><subject>Computation</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Consortia</subject><subject>Construction</subject><subject>Correlation coefficient</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Engineering</subject><subject>Eukaryotes</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Homology</subject><subject>Identification methods</subject><subject>Information dissemination</subject><subject>Knowledge representation</subject><subject>Links</subject><subject>Methods</subject><subject>Modules</subject><subject>Nodes</subject><subject>Nucleic acids</subject><subject>Ontology</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Predictions</subject><subject>Probability theory</subject><subject>Prokaryotes</subject><subject>Protein interaction</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Interaction Maps</subject><subject>Protein purification</subject><subject>Protein structure</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Semantics</subject><subject>Social interactions</subject><subject>Social organization</subject><subject>Statistical analysis</subject><subject>Technology</subject><subject>Topology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr1EAUx4Motla_gWhAEH3IOrdMMi_CUrwsFAreXofJ5CQ7azYTZyatfnsn3bRspA-ShxNOfud_cm5J8hyjFaYFfrezo-tVtxpsDyuEiwIR8SA5xYKSjBNEHx69nyRPvN8hlNOS88fJCSmZoAKj00Sv0x6u03BtMx9UC-kewtbWaWNd6uAKVGf6Nt0b7yc7KBd8apsU6hZ8avp0cDaA6bPZRlcAp3Qwto_CUdb99E-TR43qPDyb7Vny_eOHb-efs4vLT5vz9UWmuSAhK3MhipzXrChorbUivFC6blgOCnDFlUZCUIpxXVREi4YjQggqOWNV0wBQoGfJy4Pu0Fkv5_54iUtRIowYFZHYHIjaqp0cnNkr90daZeSNw7pWxgqN7kBCFfNWSihCakZEJeocaQ28AIJ5SSat93O2sdpDraEPTnUL0eWX3mxla69kzgjnLI8Cb2YBZ3-N4IOMbdbQdaoHO978dxxRXtAyoq_-Qe-vbqZaFQswfWNjXj2JyjUTOKdx6DxSq3uo-NSwNzouU2OifxHwdhEQmQC_Q6tG7-Xm65f_Zy9_LNnXR-w2rlrYetuN0-74JcgOoHbWewfNXZMxktMt3HZDTrcg51uIYS-OB3QXdLv89C_3tQVJ</recordid><startdate>20170511</startdate><enddate>20170511</enddate><creator>Zhang, Wei</creator><creator>Xu, Jia</creator><creator>Li, Yuanyuan</creator><creator>Zou, Xiufen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170511</creationdate><title>A new two-stage method for revealing missing parts of edges in protein-protein interaction networks</title><author>Zhang, Wei ; Xu, Jia ; Li, Yuanyuan ; Zou, Xiufen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8599756d4773dcca267acdf45eae1b6ac0993311d7b2c9f6022208644bffee3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Algorithms</topic><topic>Augmented reality</topic><topic>Bioinformatics</topic><topic>Biological computing</topic><topic>Biological properties</topic><topic>Biology and Life Sciences</topic><topic>Computation</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Consortia</topic><topic>Construction</topic><topic>Correlation coefficient</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Engineering</topic><topic>Eukaryotes</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Homology</topic><topic>Identification methods</topic><topic>Information dissemination</topic><topic>Knowledge representation</topic><topic>Links</topic><topic>Methods</topic><topic>Modules</topic><topic>Nodes</topic><topic>Nucleic acids</topic><topic>Ontology</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Predictions</topic><topic>Probability theory</topic><topic>Prokaryotes</topic><topic>Protein interaction</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Interaction Maps</topic><topic>Protein purification</topic><topic>Protein structure</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Semantics</topic><topic>Social interactions</topic><topic>Social organization</topic><topic>Statistical analysis</topic><topic>Technology</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Xu, Jia</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zou, Xiufen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Xu, Jia</au><au>Li, Yuanyuan</au><au>Zou, Xiufen</au><au>Schreiber, Gideon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new two-stage method for revealing missing parts of edges in protein-protein interaction networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-05-11</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>e0177029</spage><epage>e0177029</epage><pages>e0177029-e0177029</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have been significantly hindered. In this paper, we propose a two stage method to predict underlying links between two originally unlinked protein pairs. First, we measure gene expression and gene functional similarly between unlinked protein pairs on Saccharomyces cerevisiae benchmark network and obtain new constructed networks. Then, we select the significant part of the new predicted links by analyzing the difference between essential proteins that have been identified based on the new constructed networks and the original network. Furthermore, we validate the performance of the new method by using the reliable and comprehensive PPI dataset obtained from the STRING database and compare the new proposed method with four other random walk-based methods. Comparing the results indicates that the new proposed strategy performs well in predicting underlying links. This study provides a general paradigm for predicting new interactions between protein pairs and offers new insights into identifying essential proteins.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28493910</pmid><doi>10.1371/journal.pone.0177029</doi><tpages>e0177029</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-05, Vol.12 (5), p.e0177029-e0177029
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1898010439
source Publicly Available Content Database; PubMed Central
subjects Affinity
Algorithms
Augmented reality
Bioinformatics
Biological computing
Biological properties
Biology and Life Sciences
Computation
Computer and Information Sciences
Computer applications
Consortia
Construction
Correlation coefficient
Data mining
Data processing
Engineering
Eukaryotes
Gene expression
Gene Expression Regulation, Fungal
Genes
Genetics
Genomes
Genomics - methods
Homology
Identification methods
Information dissemination
Knowledge representation
Links
Methods
Modules
Nodes
Nucleic acids
Ontology
Phylogeny
Physical Sciences
Physiological aspects
Predictions
Probability theory
Prokaryotes
Protein interaction
Protein Interaction Mapping - methods
Protein Interaction Maps
Protein purification
Protein structure
Protein-protein interactions
Proteins
Research and Analysis Methods
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Semantics
Social interactions
Social organization
Statistical analysis
Technology
Topology
title A new two-stage method for revealing missing parts of edges in protein-protein interaction networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20two-stage%20method%20for%20revealing%20missing%20parts%20of%20edges%20in%20protein-protein%20interaction%20networks&rft.jtitle=PloS%20one&rft.au=Zhang,%20Wei&rft.date=2017-05-11&rft.volume=12&rft.issue=5&rft.spage=e0177029&rft.epage=e0177029&rft.pages=e0177029-e0177029&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0177029&rft_dat=%3Cgale_plos_%3EA491534936%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-8599756d4773dcca267acdf45eae1b6ac0993311d7b2c9f6022208644bffee3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898010439&rft_id=info:pmid/28493910&rft_galeid=A491534936&rfr_iscdi=true