Loading…
Selective inhibition of brain endothelial Rho-kinase-2 provides optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen activator and plasmin
Rho-kinase (ROCK) inhibition, broadly utilised in cardiovascular disease, may protect the blood-brain barrier (BBB) during thrombolysis from rt-PA-induced damage. While the use of nonselective ROCK inhibitors like fasudil together with rt-PA may be hindered by possible hypotensive side-effects and i...
Saved in:
Published in: | PloS one 2017-05, Vol.12 (5), p.e0177332-e0177332 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rho-kinase (ROCK) inhibition, broadly utilised in cardiovascular disease, may protect the blood-brain barrier (BBB) during thrombolysis from rt-PA-induced damage. While the use of nonselective ROCK inhibitors like fasudil together with rt-PA may be hindered by possible hypotensive side-effects and inadequate capacity to block detrimental rt-PA activity in brain endothelial cells (BECs), selective ROCK-2 inhibition may overcome these limitations. Here, we examined ROCK-2 expression in major brain cells and compared the ability of fasudil and KD025, a selective ROCK-2 inhibitor, to attenuate rt-PA-induced BBB impairment in an in vitro human model. ROCK-2 was highly expressed relative to ROCK-1 in all human and mouse brain cell types and particularly enriched in rodent brain endothelial cells and astrocytes compared to neurons. KD025 was more potent than fasudil in attenuation of rt-PA- and plasminogen-induced BBB permeation under normoxia, but especially under stroke-like conditions. Importantly, only KD025, but not fasudil, was able to block rt-PA-dependent permeability increases, morphology changes and tight junction degradation in isolated BECs. Selective ROCK-2 inhibition further diminished rt-PA-triggered myosin phosphorylation, shape alterations and matrix metalloprotease activation in astrocytes. These findings highlight ROCK-2 as the key isoform driving BBB impairment and brain endothelial damage by rt-PA and the potential of KD025 to optimally protect the BBB during thrombolysis. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0177332 |