Loading…
Identification of key contributors in complex population structures
Evaluating the genetic contribution of individuals to population structure is essential to select informative individuals for genome sequencing, genotype imputation and to ascertain complex population structures. Existing methods for the selection of informative individuals for genomic imputation so...
Saved in:
Published in: | PloS one 2017-05, Vol.12 (5), p.e0177638-e0177638 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c730t-140f2f0f7a4b062ffcb61b1d3928f1a604d64b177847faa9c7873ee6c3b019553 |
---|---|
cites | cdi_FETCH-LOGICAL-c730t-140f2f0f7a4b062ffcb61b1d3928f1a604d64b177847faa9c7873ee6c3b019553 |
container_end_page | e0177638 |
container_issue | 5 |
container_start_page | e0177638 |
container_title | PloS one |
container_volume | 12 |
creator | Neuditschko, Markus Raadsma, Herman W Khatkar, Mehar S Jonas, Elisabeth Steinig, Eike J Flury, Christine Signer-Hasler, Heidi Frischknecht, Mirjam von Niederhäusern, Ruedi Leeb, Tosso Rieder, Stefan |
description | Evaluating the genetic contribution of individuals to population structure is essential to select informative individuals for genome sequencing, genotype imputation and to ascertain complex population structures. Existing methods for the selection of informative individuals for genomic imputation solely focus on the identification of key ancestors, which can lead to a loss of phasing accuracy of the reference population. Currently many methods are independently applied to investigate complex population structures. Based on the Eigenvalue Decomposition (EVD) of a genomic relationship matrix we describe a novel approach to evaluate the genetic contribution of individuals to population structure. We combined the identification of key contributors with model-based clustering and population network visualization into an integrated three-step approach, which allows identification of high-resolution population structures and substructures around such key contributors. The approach was applied and validated in four disparate datasets including a simulated population (5,100 individuals and 10,000 SNPs), a highly structured experimental sheep population (1,421 individuals and 44,693 SNPs) and two large complex pedigree populations namely horse (1,077 individuals and 38,124 SNPs) and cattle (2,457 individuals and 45,765 SNPs). In the simulated and experimental sheep dataset, our method, which is unsupervised, successfully identified all known key contributors. Applying our three-step approach to the horse and cattle populations, we observed high-resolution population substructures including the absence of obvious important key contributors. Furthermore, we show that compared to commonly applied strategies to select informative individuals for genotype imputation including the computation of marginal gene contributions (Pedig) and the optimization of genetic relatedness (Rel), the selection of key contributors provided the highest phasing accuracies within the selected reference populations. The presented approach opens new perspectives in the characterization and informed management of populations in general, and in areas such as conservation genetics and selective animal breeding in particular, where assessing the genetic contribution of influential and admixed individuals is crucial for research and management applications. As such, this method provides a valuable complement to common applied tools to visualize complex population structures and to select individual |
doi_str_mv | 10.1371/journal.pone.0177638 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1899375996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491823748</galeid><doaj_id>oai_doaj_org_article_ec8bf75d37674165baa37de93f771051</doaj_id><sourcerecordid>A491823748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c730t-140f2f0f7a4b062ffcb61b1d3928f1a604d64b177847faa9c7873ee6c3b019553</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQHBNGHjknT5vIiLIOXgYUFb68hTZOZjJmmm4vufntTp7tMZR8kD0lPf_9_c07PKYrnECwhIvDdziXfC7scXK-WABKCEX1QnEKGqhJXAD08Op8UT0LYAdAgivHj4qSiTQUoaE6L1bpTfTTaSBGN6xdOL36qm4V0ffSmTdH5sDB9ft4PVl0vBjckeyBD9EnG5FV4WjzSwgb1bNrPiu8fP3xbfS4vLj-tV-cXpSQIxBLWQFcaaCLqFuBKa9li2MIOsYpqKDCoO1y3ORFaEy0Ek4QSpBSWqAWQNQ06K14efAfrAp_yDxxSxhBpGMOZWB-IzokdH7zZC3_DnTD8b8D5DRc-GmkVV5K2mjQdIpjUEDetEIh0iiFNCAQNzF7lwSv8VkNqZ27Bplb4ceNBcYry5TL_frpdaveqk7msXtiZbP6mN1u-cb94UyNEKpYN3kwG3l0lFSLfmyCVtaJXLuU8GQAU0QaP6Kt_0PurMVEbkRM2vXb5u3I05ec1g7RCpKaZWt5D5dWpvcl9oLTJ8Zng7Uww9oq6jhuRQuDrr1_-n738MWdfH7FbJWzcBmfT2G1hDtYHUHoXglf6rsgQ8HE2bqvBx9ng02xk2YvjH3Qnuh0G9Aci6QoV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899375996</pqid></control><display><type>article</type><title>Identification of key contributors in complex population structures</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Neuditschko, Markus ; Raadsma, Herman W ; Khatkar, Mehar S ; Jonas, Elisabeth ; Steinig, Eike J ; Flury, Christine ; Signer-Hasler, Heidi ; Frischknecht, Mirjam ; von Niederhäusern, Ruedi ; Leeb, Tosso ; Rieder, Stefan</creator><contributor>Chaubey, Gyaneshwer</contributor><creatorcontrib>Neuditschko, Markus ; Raadsma, Herman W ; Khatkar, Mehar S ; Jonas, Elisabeth ; Steinig, Eike J ; Flury, Christine ; Signer-Hasler, Heidi ; Frischknecht, Mirjam ; von Niederhäusern, Ruedi ; Leeb, Tosso ; Rieder, Stefan ; Sveriges lantbruksuniversitet ; Chaubey, Gyaneshwer</creatorcontrib><description>Evaluating the genetic contribution of individuals to population structure is essential to select informative individuals for genome sequencing, genotype imputation and to ascertain complex population structures. Existing methods for the selection of informative individuals for genomic imputation solely focus on the identification of key ancestors, which can lead to a loss of phasing accuracy of the reference population. Currently many methods are independently applied to investigate complex population structures. Based on the Eigenvalue Decomposition (EVD) of a genomic relationship matrix we describe a novel approach to evaluate the genetic contribution of individuals to population structure. We combined the identification of key contributors with model-based clustering and population network visualization into an integrated three-step approach, which allows identification of high-resolution population structures and substructures around such key contributors. The approach was applied and validated in four disparate datasets including a simulated population (5,100 individuals and 10,000 SNPs), a highly structured experimental sheep population (1,421 individuals and 44,693 SNPs) and two large complex pedigree populations namely horse (1,077 individuals and 38,124 SNPs) and cattle (2,457 individuals and 45,765 SNPs). In the simulated and experimental sheep dataset, our method, which is unsupervised, successfully identified all known key contributors. Applying our three-step approach to the horse and cattle populations, we observed high-resolution population substructures including the absence of obvious important key contributors. Furthermore, we show that compared to commonly applied strategies to select informative individuals for genotype imputation including the computation of marginal gene contributions (Pedig) and the optimization of genetic relatedness (Rel), the selection of key contributors provided the highest phasing accuracies within the selected reference populations. The presented approach opens new perspectives in the characterization and informed management of populations in general, and in areas such as conservation genetics and selective animal breeding in particular, where assessing the genetic contribution of influential and admixed individuals is crucial for research and management applications. As such, this method provides a valuable complement to common applied tools to visualize complex population structures and to select individuals for re-sequencing.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0177638</identifier><identifier>PMID: 28520805</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Airway management ; Algorithms ; Animal and Dairy Science ; Animal breeding ; Animal populations ; Animals ; Biology and Life Sciences ; Breeding ; Cattle ; Clustering ; Computer Simulation ; Conservation ; Conservation genetics ; Ecology and Environmental Sciences ; Eigenvalues ; Gene sequencing ; Genetic aspects ; Genetic diversity ; Genetics ; Genetics, Population ; Genomes ; Genomics ; Haplotypes ; High resolution ; Horses ; Husdjursvetenskap ; Identification ; Models, Genetic ; Optimization ; Pedigree ; Population ; Population genetics ; Population research ; Population structure ; Populations ; Principal components analysis ; Reproducibility of Results ; Science ; Sheep ; Single-nucleotide polymorphism ; Software packages ; Studies ; Substructures ; Wildlife conservation ; Workflow</subject><ispartof>PloS one, 2017-05, Vol.12 (5), p.e0177638-e0177638</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Neuditschko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Neuditschko et al 2017 Neuditschko et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c730t-140f2f0f7a4b062ffcb61b1d3928f1a604d64b177847faa9c7873ee6c3b019553</citedby><cites>FETCH-LOGICAL-c730t-140f2f0f7a4b062ffcb61b1d3928f1a604d64b177847faa9c7873ee6c3b019553</cites><orcidid>0000-0002-4554-1404 ; 0000-0003-4950-2549 ; 0000-0003-0553-4880 ; 0000-0001-5193-5306 ; 0000-0002-5657-5036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899375996/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899375996?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28520805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/83553$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Chaubey, Gyaneshwer</contributor><creatorcontrib>Neuditschko, Markus</creatorcontrib><creatorcontrib>Raadsma, Herman W</creatorcontrib><creatorcontrib>Khatkar, Mehar S</creatorcontrib><creatorcontrib>Jonas, Elisabeth</creatorcontrib><creatorcontrib>Steinig, Eike J</creatorcontrib><creatorcontrib>Flury, Christine</creatorcontrib><creatorcontrib>Signer-Hasler, Heidi</creatorcontrib><creatorcontrib>Frischknecht, Mirjam</creatorcontrib><creatorcontrib>von Niederhäusern, Ruedi</creatorcontrib><creatorcontrib>Leeb, Tosso</creatorcontrib><creatorcontrib>Rieder, Stefan</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Identification of key contributors in complex population structures</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Evaluating the genetic contribution of individuals to population structure is essential to select informative individuals for genome sequencing, genotype imputation and to ascertain complex population structures. Existing methods for the selection of informative individuals for genomic imputation solely focus on the identification of key ancestors, which can lead to a loss of phasing accuracy of the reference population. Currently many methods are independently applied to investigate complex population structures. Based on the Eigenvalue Decomposition (EVD) of a genomic relationship matrix we describe a novel approach to evaluate the genetic contribution of individuals to population structure. We combined the identification of key contributors with model-based clustering and population network visualization into an integrated three-step approach, which allows identification of high-resolution population structures and substructures around such key contributors. The approach was applied and validated in four disparate datasets including a simulated population (5,100 individuals and 10,000 SNPs), a highly structured experimental sheep population (1,421 individuals and 44,693 SNPs) and two large complex pedigree populations namely horse (1,077 individuals and 38,124 SNPs) and cattle (2,457 individuals and 45,765 SNPs). In the simulated and experimental sheep dataset, our method, which is unsupervised, successfully identified all known key contributors. Applying our three-step approach to the horse and cattle populations, we observed high-resolution population substructures including the absence of obvious important key contributors. Furthermore, we show that compared to commonly applied strategies to select informative individuals for genotype imputation including the computation of marginal gene contributions (Pedig) and the optimization of genetic relatedness (Rel), the selection of key contributors provided the highest phasing accuracies within the selected reference populations. The presented approach opens new perspectives in the characterization and informed management of populations in general, and in areas such as conservation genetics and selective animal breeding in particular, where assessing the genetic contribution of influential and admixed individuals is crucial for research and management applications. As such, this method provides a valuable complement to common applied tools to visualize complex population structures and to select individuals for re-sequencing.</description><subject>Accuracy</subject><subject>Airway management</subject><subject>Algorithms</subject><subject>Animal and Dairy Science</subject><subject>Animal breeding</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Breeding</subject><subject>Cattle</subject><subject>Clustering</subject><subject>Computer Simulation</subject><subject>Conservation</subject><subject>Conservation genetics</subject><subject>Ecology and Environmental Sciences</subject><subject>Eigenvalues</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>High resolution</subject><subject>Horses</subject><subject>Husdjursvetenskap</subject><subject>Identification</subject><subject>Models, Genetic</subject><subject>Optimization</subject><subject>Pedigree</subject><subject>Population</subject><subject>Population genetics</subject><subject>Population research</subject><subject>Population structure</subject><subject>Populations</subject><subject>Principal components analysis</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Sheep</subject><subject>Single-nucleotide polymorphism</subject><subject>Software packages</subject><subject>Studies</subject><subject>Substructures</subject><subject>Wildlife conservation</subject><subject>Workflow</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQHBNGHjknT5vIiLIOXgYUFb68hTZOZjJmmm4vufntTp7tMZR8kD0lPf_9_c07PKYrnECwhIvDdziXfC7scXK-WABKCEX1QnEKGqhJXAD08Op8UT0LYAdAgivHj4qSiTQUoaE6L1bpTfTTaSBGN6xdOL36qm4V0ffSmTdH5sDB9ft4PVl0vBjckeyBD9EnG5FV4WjzSwgb1bNrPiu8fP3xbfS4vLj-tV-cXpSQIxBLWQFcaaCLqFuBKa9li2MIOsYpqKDCoO1y3ORFaEy0Ek4QSpBSWqAWQNQ06K14efAfrAp_yDxxSxhBpGMOZWB-IzokdH7zZC3_DnTD8b8D5DRc-GmkVV5K2mjQdIpjUEDetEIh0iiFNCAQNzF7lwSv8VkNqZ27Bplb4ceNBcYry5TL_frpdaveqk7msXtiZbP6mN1u-cb94UyNEKpYN3kwG3l0lFSLfmyCVtaJXLuU8GQAU0QaP6Kt_0PurMVEbkRM2vXb5u3I05ec1g7RCpKaZWt5D5dWpvcl9oLTJ8Zng7Uww9oq6jhuRQuDrr1_-n738MWdfH7FbJWzcBmfT2G1hDtYHUHoXglf6rsgQ8HE2bqvBx9ng02xk2YvjH3Qnuh0G9Aci6QoV</recordid><startdate>20170516</startdate><enddate>20170516</enddate><creator>Neuditschko, Markus</creator><creator>Raadsma, Herman W</creator><creator>Khatkar, Mehar S</creator><creator>Jonas, Elisabeth</creator><creator>Steinig, Eike J</creator><creator>Flury, Christine</creator><creator>Signer-Hasler, Heidi</creator><creator>Frischknecht, Mirjam</creator><creator>von Niederhäusern, Ruedi</creator><creator>Leeb, Tosso</creator><creator>Rieder, Stefan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4554-1404</orcidid><orcidid>https://orcid.org/0000-0003-4950-2549</orcidid><orcidid>https://orcid.org/0000-0003-0553-4880</orcidid><orcidid>https://orcid.org/0000-0001-5193-5306</orcidid><orcidid>https://orcid.org/0000-0002-5657-5036</orcidid></search><sort><creationdate>20170516</creationdate><title>Identification of key contributors in complex population structures</title><author>Neuditschko, Markus ; Raadsma, Herman W ; Khatkar, Mehar S ; Jonas, Elisabeth ; Steinig, Eike J ; Flury, Christine ; Signer-Hasler, Heidi ; Frischknecht, Mirjam ; von Niederhäusern, Ruedi ; Leeb, Tosso ; Rieder, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c730t-140f2f0f7a4b062ffcb61b1d3928f1a604d64b177847faa9c7873ee6c3b019553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Airway management</topic><topic>Algorithms</topic><topic>Animal and Dairy Science</topic><topic>Animal breeding</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Breeding</topic><topic>Cattle</topic><topic>Clustering</topic><topic>Computer Simulation</topic><topic>Conservation</topic><topic>Conservation genetics</topic><topic>Ecology and Environmental Sciences</topic><topic>Eigenvalues</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>High resolution</topic><topic>Horses</topic><topic>Husdjursvetenskap</topic><topic>Identification</topic><topic>Models, Genetic</topic><topic>Optimization</topic><topic>Pedigree</topic><topic>Population</topic><topic>Population genetics</topic><topic>Population research</topic><topic>Population structure</topic><topic>Populations</topic><topic>Principal components analysis</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Sheep</topic><topic>Single-nucleotide polymorphism</topic><topic>Software packages</topic><topic>Studies</topic><topic>Substructures</topic><topic>Wildlife conservation</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neuditschko, Markus</creatorcontrib><creatorcontrib>Raadsma, Herman W</creatorcontrib><creatorcontrib>Khatkar, Mehar S</creatorcontrib><creatorcontrib>Jonas, Elisabeth</creatorcontrib><creatorcontrib>Steinig, Eike J</creatorcontrib><creatorcontrib>Flury, Christine</creatorcontrib><creatorcontrib>Signer-Hasler, Heidi</creatorcontrib><creatorcontrib>Frischknecht, Mirjam</creatorcontrib><creatorcontrib>von Niederhäusern, Ruedi</creatorcontrib><creatorcontrib>Leeb, Tosso</creatorcontrib><creatorcontrib>Rieder, Stefan</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neuditschko, Markus</au><au>Raadsma, Herman W</au><au>Khatkar, Mehar S</au><au>Jonas, Elisabeth</au><au>Steinig, Eike J</au><au>Flury, Christine</au><au>Signer-Hasler, Heidi</au><au>Frischknecht, Mirjam</au><au>von Niederhäusern, Ruedi</au><au>Leeb, Tosso</au><au>Rieder, Stefan</au><au>Chaubey, Gyaneshwer</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of key contributors in complex population structures</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-05-16</date><risdate>2017</risdate><volume>12</volume><issue>5</issue><spage>e0177638</spage><epage>e0177638</epage><pages>e0177638-e0177638</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Evaluating the genetic contribution of individuals to population structure is essential to select informative individuals for genome sequencing, genotype imputation and to ascertain complex population structures. Existing methods for the selection of informative individuals for genomic imputation solely focus on the identification of key ancestors, which can lead to a loss of phasing accuracy of the reference population. Currently many methods are independently applied to investigate complex population structures. Based on the Eigenvalue Decomposition (EVD) of a genomic relationship matrix we describe a novel approach to evaluate the genetic contribution of individuals to population structure. We combined the identification of key contributors with model-based clustering and population network visualization into an integrated three-step approach, which allows identification of high-resolution population structures and substructures around such key contributors. The approach was applied and validated in four disparate datasets including a simulated population (5,100 individuals and 10,000 SNPs), a highly structured experimental sheep population (1,421 individuals and 44,693 SNPs) and two large complex pedigree populations namely horse (1,077 individuals and 38,124 SNPs) and cattle (2,457 individuals and 45,765 SNPs). In the simulated and experimental sheep dataset, our method, which is unsupervised, successfully identified all known key contributors. Applying our three-step approach to the horse and cattle populations, we observed high-resolution population substructures including the absence of obvious important key contributors. Furthermore, we show that compared to commonly applied strategies to select informative individuals for genotype imputation including the computation of marginal gene contributions (Pedig) and the optimization of genetic relatedness (Rel), the selection of key contributors provided the highest phasing accuracies within the selected reference populations. The presented approach opens new perspectives in the characterization and informed management of populations in general, and in areas such as conservation genetics and selective animal breeding in particular, where assessing the genetic contribution of influential and admixed individuals is crucial for research and management applications. As such, this method provides a valuable complement to common applied tools to visualize complex population structures and to select individuals for re-sequencing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28520805</pmid><doi>10.1371/journal.pone.0177638</doi><tpages>e0177638</tpages><orcidid>https://orcid.org/0000-0002-4554-1404</orcidid><orcidid>https://orcid.org/0000-0003-4950-2549</orcidid><orcidid>https://orcid.org/0000-0003-0553-4880</orcidid><orcidid>https://orcid.org/0000-0001-5193-5306</orcidid><orcidid>https://orcid.org/0000-0002-5657-5036</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-05, Vol.12 (5), p.e0177638-e0177638 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1899375996 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Accuracy Airway management Algorithms Animal and Dairy Science Animal breeding Animal populations Animals Biology and Life Sciences Breeding Cattle Clustering Computer Simulation Conservation Conservation genetics Ecology and Environmental Sciences Eigenvalues Gene sequencing Genetic aspects Genetic diversity Genetics Genetics, Population Genomes Genomics Haplotypes High resolution Horses Husdjursvetenskap Identification Models, Genetic Optimization Pedigree Population Population genetics Population research Population structure Populations Principal components analysis Reproducibility of Results Science Sheep Single-nucleotide polymorphism Software packages Studies Substructures Wildlife conservation Workflow |
title | Identification of key contributors in complex population structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20key%20contributors%20in%20complex%20population%20structures&rft.jtitle=PloS%20one&rft.au=Neuditschko,%20Markus&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2017-05-16&rft.volume=12&rft.issue=5&rft.spage=e0177638&rft.epage=e0177638&rft.pages=e0177638-e0177638&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0177638&rft_dat=%3Cgale_plos_%3EA491823748%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c730t-140f2f0f7a4b062ffcb61b1d3928f1a604d64b177847faa9c7873ee6c3b019553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899375996&rft_id=info:pmid/28520805&rft_galeid=A491823748&rfr_iscdi=true |