Loading…

Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers

To assess the diagnostic weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers (csPCa). We used a prospective database of 262 patients who underwent T2-weighted, diffusion-weighted, and dynamic contrast-enhanced (DCE) imaging before prostat...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-06, Vol.12 (6), p.e0178901-e0178901
Main Authors: Rouvière, Olivier, Dagonneau, Tristan, Cros, Fanny, Bratan, Flavie, Roche, Laurent, Mège-Lechevallier, Florence, Ruffion, Alain, Crouzet, Sébastien, Colombel, Marc, Rabilloud, Muriel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c726t-7f1f54d970165ad30b194695128e47a20da275421b1fc3dbde4356c7016425d93
cites cdi_FETCH-LOGICAL-c726t-7f1f54d970165ad30b194695128e47a20da275421b1fc3dbde4356c7016425d93
container_end_page e0178901
container_issue 6
container_start_page e0178901
container_title PloS one
container_volume 12
creator Rouvière, Olivier
Dagonneau, Tristan
Cros, Fanny
Bratan, Flavie
Roche, Laurent
Mège-Lechevallier, Florence
Ruffion, Alain
Crouzet, Sébastien
Colombel, Marc
Rabilloud, Muriel
description To assess the diagnostic weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers (csPCa). We used a prospective database of 262 patients who underwent T2-weighted, diffusion-weighted, and dynamic contrast-enhanced (DCE) imaging before prostatectomy. For each lesion, two independent readers (R1, R2) prospectively defined nine features: shape, volume (V_Max), signal abnormality on each pulse sequence, number of pulse sequences with a marked (S_Max) and non-visible (S_Min) abnormality, likelihood of extracapsular extension (ECE) and PSA density (dPSA). Overall likelihood of malignancy was assessed using a 5-level Likert score. Features were evaluated using the area under the receiver operating characteristic curve (AUC). csPCa was defined as Gleason ≥7 cancer (csPCa-A), Gleason ≥7(4+3) cancer (csPCa-B) or Gleason ≥7 cancer with histological extraprostatic extension (csPCa-C). For csPCa-A, the Signal1 model (S_Max+S_Min) provided the best combination of signal-related variables, for both readers. The performance was improved by adding V_Max, ECE and/or dPSA, but not shape. All models performed better with DCE findings than without. When moving from csPCa-A to csPCa-B and csPCa-C definitions, the added value of V_Max, dPSA and ECE increased as compared to signal-related variables, and the added value of DCE decreased. For R1, the best models were Signal1+ECE+dPSA (AUC = 0,805 [95%CI:0,757-0,866]), Signal1+V_Max+dPSA (AUC = 0.823 [95%CI:0.760-0.893]) and Signal1+ECE+dPSA [AUC = 0.840 (95%CI:0.774-0.907)] for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0.844 [95%CI:0.806-0.877, p = 0.11], 0.841 [95%CI:0.799-0.876, p = 0.52]) and 0.849 [95%CI:0.811-0.884, p = 0.49], respectively. For R2, the best models were Signal1+V_Max+dPSA (AUC = 0,790 [95%CI:0,731-0,857]), Signal1+V_Max (AUC = 0.813 [95%CI:0.746-0.882]) and Signal1+ECE+V_Max (AUC = 0.843 [95%CI: 0.781-0.907]) for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0. 829 [95%CI:0.791-0.868, p = 0.13], 0.790 [95%CI:0.742-0.841, p = 0.12]) and 0.808 [95%CI:0.764-0.845, p = 0.006]), respectively. Combination of simple variables can match the Likert score's results. The optimal combination depends on the definition of csPCa.
doi_str_mv 10.1371/journal.pone.0178901
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1907781520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A494977815</galeid><doaj_id>oai_doaj_org_article_35230237703b47b1a7f1294ee0593469</doaj_id><sourcerecordid>A494977815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-7f1f54d970165ad30b194695128e47a20da275421b1fc3dbde4356c7016425d93</originalsourceid><addsrcrecordid>eNqNk1tr2zAYhs3YWLtu_2BshsFYL5LpZMu6GZTu0EChsNOtUOTPjooipZKcrfsT-8uTm7QkpRfDF7al532_g_QVxUuMpphy_P7SD8EpO115B1OEeSMQflQcYkHJpCaIPt75PiiexXiJUEWbun5aHJCmEgIhfFj8_WhU73xMRpdrZQcolWvLAFYls4byF5h-kUrflRGuBnAaJnEF2nQZX2YhjLoA0TuV98oOVBryb2lcqRcqKJ0gmD_G9aW2xhmtrL0uo-nd6KBcKlchx1YJSj0ahPi8eNIpG-HF9n1U_Pj86fvp2eT84svs9OR8ojmp04R3uKtYKzjCdaVaiuZYsFpUmDTAuCKoVYRXjOA57jRt5y0wWtV6xBmpWkGPitcb35X1UW57GSUWiPMGV7lnR8VsQ7ReXcpVMEsVrqVXRt4s-NBLFXL5FiStCEWEco7onPE5Vjk9IhgAqgTNaWWvD9tow3wJrQaXgrJ7pvs7zixk79eyYnVNxGhwvDFY3JOdnZzLcQ3l-ikXzRpn9t02WPD5zGKSSxM1WKsc-OGmxoZRxlGT0Tf30Ic7saV6lYs1rvM5Rz2ayhMmmLjhMjV9gMpPC0uj8yXtTF7fExzvCTKT4Hfq1RCjnH37-v_sxc999u0OuwBl0yJ6OyTjXdwH2QbU-RLGAN1dZzGS44zddkOOMya3M5Zlr3YP8050O1T0H2NyIeE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907781520</pqid></control><display><type>article</type><title>Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Rouvière, Olivier ; Dagonneau, Tristan ; Cros, Fanny ; Bratan, Flavie ; Roche, Laurent ; Mège-Lechevallier, Florence ; Ruffion, Alain ; Crouzet, Sébastien ; Colombel, Marc ; Rabilloud, Muriel</creator><contributor>Sung, Shian-Ying</contributor><creatorcontrib>Rouvière, Olivier ; Dagonneau, Tristan ; Cros, Fanny ; Bratan, Flavie ; Roche, Laurent ; Mège-Lechevallier, Florence ; Ruffion, Alain ; Crouzet, Sébastien ; Colombel, Marc ; Rabilloud, Muriel ; Sung, Shian-Ying</creatorcontrib><description>To assess the diagnostic weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers (csPCa). We used a prospective database of 262 patients who underwent T2-weighted, diffusion-weighted, and dynamic contrast-enhanced (DCE) imaging before prostatectomy. For each lesion, two independent readers (R1, R2) prospectively defined nine features: shape, volume (V_Max), signal abnormality on each pulse sequence, number of pulse sequences with a marked (S_Max) and non-visible (S_Min) abnormality, likelihood of extracapsular extension (ECE) and PSA density (dPSA). Overall likelihood of malignancy was assessed using a 5-level Likert score. Features were evaluated using the area under the receiver operating characteristic curve (AUC). csPCa was defined as Gleason ≥7 cancer (csPCa-A), Gleason ≥7(4+3) cancer (csPCa-B) or Gleason ≥7 cancer with histological extraprostatic extension (csPCa-C). For csPCa-A, the Signal1 model (S_Max+S_Min) provided the best combination of signal-related variables, for both readers. The performance was improved by adding V_Max, ECE and/or dPSA, but not shape. All models performed better with DCE findings than without. When moving from csPCa-A to csPCa-B and csPCa-C definitions, the added value of V_Max, dPSA and ECE increased as compared to signal-related variables, and the added value of DCE decreased. For R1, the best models were Signal1+ECE+dPSA (AUC = 0,805 [95%CI:0,757-0,866]), Signal1+V_Max+dPSA (AUC = 0.823 [95%CI:0.760-0.893]) and Signal1+ECE+dPSA [AUC = 0.840 (95%CI:0.774-0.907)] for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0.844 [95%CI:0.806-0.877, p = 0.11], 0.841 [95%CI:0.799-0.876, p = 0.52]) and 0.849 [95%CI:0.811-0.884, p = 0.49], respectively. For R2, the best models were Signal1+V_Max+dPSA (AUC = 0,790 [95%CI:0,731-0,857]), Signal1+V_Max (AUC = 0.813 [95%CI:0.746-0.882]) and Signal1+ECE+V_Max (AUC = 0.843 [95%CI: 0.781-0.907]) for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0. 829 [95%CI:0.791-0.868, p = 0.13], 0.790 [95%CI:0.742-0.841, p = 0.12]) and 0.808 [95%CI:0.764-0.845, p = 0.006]), respectively. Combination of simple variables can match the Likert score's results. The optimal combination depends on the definition of csPCa.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0178901</identifier><identifier>PMID: 28599001</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Aged ; Antigens ; Area Under Curve ; Bioengineering ; Biology and Life Sciences ; Cancer ; Cancer surgery ; Care and treatment ; Clinical significance ; Density ; Diagnosis ; Diagnostic systems ; Diagnostic tests ; Diffusion ; Diffusion Magnetic Resonance Imaging ; Human health and pathology ; Humans ; Image Enhancement ; Imaging ; Life Sciences ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Malignancy ; Mathematical models ; Medical diagnosis ; Medicine and Health Sciences ; Middle Aged ; NMR ; Nuclear magnetic resonance ; Optimization ; Patients ; Prostate cancer ; Prostatectomy ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - surgery ; Readers ; Research and Analysis Methods ; Resonance ; ROC Curve ; Sequences ; Urological surgery ; Urology ; Urology and Nephrology</subject><ispartof>PloS one, 2017-06, Vol.12 (6), p.e0178901-e0178901</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Rouvière et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 Rouvière et al 2017 Rouvière et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-7f1f54d970165ad30b194695128e47a20da275421b1fc3dbde4356c7016425d93</citedby><cites>FETCH-LOGICAL-c726t-7f1f54d970165ad30b194695128e47a20da275421b1fc3dbde4356c7016425d93</cites><orcidid>0000-0002-0030-478X ; 0000-0001-8946-4917 ; 0000-0003-1324-0356 ; 0000-0003-0512-3459 ; 0000-0003-0435-3324 ; 0000-0001-5812-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1907781520/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1907781520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28599001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01943798$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Sung, Shian-Ying</contributor><creatorcontrib>Rouvière, Olivier</creatorcontrib><creatorcontrib>Dagonneau, Tristan</creatorcontrib><creatorcontrib>Cros, Fanny</creatorcontrib><creatorcontrib>Bratan, Flavie</creatorcontrib><creatorcontrib>Roche, Laurent</creatorcontrib><creatorcontrib>Mège-Lechevallier, Florence</creatorcontrib><creatorcontrib>Ruffion, Alain</creatorcontrib><creatorcontrib>Crouzet, Sébastien</creatorcontrib><creatorcontrib>Colombel, Marc</creatorcontrib><creatorcontrib>Rabilloud, Muriel</creatorcontrib><title>Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To assess the diagnostic weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers (csPCa). We used a prospective database of 262 patients who underwent T2-weighted, diffusion-weighted, and dynamic contrast-enhanced (DCE) imaging before prostatectomy. For each lesion, two independent readers (R1, R2) prospectively defined nine features: shape, volume (V_Max), signal abnormality on each pulse sequence, number of pulse sequences with a marked (S_Max) and non-visible (S_Min) abnormality, likelihood of extracapsular extension (ECE) and PSA density (dPSA). Overall likelihood of malignancy was assessed using a 5-level Likert score. Features were evaluated using the area under the receiver operating characteristic curve (AUC). csPCa was defined as Gleason ≥7 cancer (csPCa-A), Gleason ≥7(4+3) cancer (csPCa-B) or Gleason ≥7 cancer with histological extraprostatic extension (csPCa-C). For csPCa-A, the Signal1 model (S_Max+S_Min) provided the best combination of signal-related variables, for both readers. The performance was improved by adding V_Max, ECE and/or dPSA, but not shape. All models performed better with DCE findings than without. When moving from csPCa-A to csPCa-B and csPCa-C definitions, the added value of V_Max, dPSA and ECE increased as compared to signal-related variables, and the added value of DCE decreased. For R1, the best models were Signal1+ECE+dPSA (AUC = 0,805 [95%CI:0,757-0,866]), Signal1+V_Max+dPSA (AUC = 0.823 [95%CI:0.760-0.893]) and Signal1+ECE+dPSA [AUC = 0.840 (95%CI:0.774-0.907)] for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0.844 [95%CI:0.806-0.877, p = 0.11], 0.841 [95%CI:0.799-0.876, p = 0.52]) and 0.849 [95%CI:0.811-0.884, p = 0.49], respectively. For R2, the best models were Signal1+V_Max+dPSA (AUC = 0,790 [95%CI:0,731-0,857]), Signal1+V_Max (AUC = 0.813 [95%CI:0.746-0.882]) and Signal1+ECE+V_Max (AUC = 0.843 [95%CI: 0.781-0.907]) for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0. 829 [95%CI:0.791-0.868, p = 0.13], 0.790 [95%CI:0.742-0.841, p = 0.12]) and 0.808 [95%CI:0.764-0.845, p = 0.006]), respectively. Combination of simple variables can match the Likert score's results. The optimal combination depends on the definition of csPCa.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Antigens</subject><subject>Area Under Curve</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cancer surgery</subject><subject>Care and treatment</subject><subject>Clinical significance</subject><subject>Density</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diagnostic tests</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Image Enhancement</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Malignancy</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Patients</subject><subject>Prostate cancer</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Readers</subject><subject>Research and Analysis Methods</subject><subject>Resonance</subject><subject>ROC Curve</subject><subject>Sequences</subject><subject>Urological surgery</subject><subject>Urology</subject><subject>Urology and Nephrology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr2zAYhs3YWLtu_2BshsFYL5LpZMu6GZTu0EChsNOtUOTPjooipZKcrfsT-8uTm7QkpRfDF7al532_g_QVxUuMpphy_P7SD8EpO115B1OEeSMQflQcYkHJpCaIPt75PiiexXiJUEWbun5aHJCmEgIhfFj8_WhU73xMRpdrZQcolWvLAFYls4byF5h-kUrflRGuBnAaJnEF2nQZX2YhjLoA0TuV98oOVBryb2lcqRcqKJ0gmD_G9aW2xhmtrL0uo-nd6KBcKlchx1YJSj0ahPi8eNIpG-HF9n1U_Pj86fvp2eT84svs9OR8ojmp04R3uKtYKzjCdaVaiuZYsFpUmDTAuCKoVYRXjOA57jRt5y0wWtV6xBmpWkGPitcb35X1UW57GSUWiPMGV7lnR8VsQ7ReXcpVMEsVrqVXRt4s-NBLFXL5FiStCEWEco7onPE5Vjk9IhgAqgTNaWWvD9tow3wJrQaXgrJ7pvs7zixk79eyYnVNxGhwvDFY3JOdnZzLcQ3l-ikXzRpn9t02WPD5zGKSSxM1WKsc-OGmxoZRxlGT0Tf30Ic7saV6lYs1rvM5Rz2ayhMmmLjhMjV9gMpPC0uj8yXtTF7fExzvCTKT4Hfq1RCjnH37-v_sxc999u0OuwBl0yJ6OyTjXdwH2QbU-RLGAN1dZzGS44zddkOOMya3M5Zlr3YP8050O1T0H2NyIeE</recordid><startdate>20170609</startdate><enddate>20170609</enddate><creator>Rouvière, Olivier</creator><creator>Dagonneau, Tristan</creator><creator>Cros, Fanny</creator><creator>Bratan, Flavie</creator><creator>Roche, Laurent</creator><creator>Mège-Lechevallier, Florence</creator><creator>Ruffion, Alain</creator><creator>Crouzet, Sébastien</creator><creator>Colombel, Marc</creator><creator>Rabilloud, Muriel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0030-478X</orcidid><orcidid>https://orcid.org/0000-0001-8946-4917</orcidid><orcidid>https://orcid.org/0000-0003-1324-0356</orcidid><orcidid>https://orcid.org/0000-0003-0512-3459</orcidid><orcidid>https://orcid.org/0000-0003-0435-3324</orcidid><orcidid>https://orcid.org/0000-0001-5812-6771</orcidid></search><sort><creationdate>20170609</creationdate><title>Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers</title><author>Rouvière, Olivier ; Dagonneau, Tristan ; Cros, Fanny ; Bratan, Flavie ; Roche, Laurent ; Mège-Lechevallier, Florence ; Ruffion, Alain ; Crouzet, Sébastien ; Colombel, Marc ; Rabilloud, Muriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-7f1f54d970165ad30b194695128e47a20da275421b1fc3dbde4356c7016425d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Antigens</topic><topic>Area Under Curve</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cancer surgery</topic><topic>Care and treatment</topic><topic>Clinical significance</topic><topic>Density</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diagnostic tests</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Image Enhancement</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Malignancy</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Patients</topic><topic>Prostate cancer</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Readers</topic><topic>Research and Analysis Methods</topic><topic>Resonance</topic><topic>ROC Curve</topic><topic>Sequences</topic><topic>Urological surgery</topic><topic>Urology</topic><topic>Urology and Nephrology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouvière, Olivier</creatorcontrib><creatorcontrib>Dagonneau, Tristan</creatorcontrib><creatorcontrib>Cros, Fanny</creatorcontrib><creatorcontrib>Bratan, Flavie</creatorcontrib><creatorcontrib>Roche, Laurent</creatorcontrib><creatorcontrib>Mège-Lechevallier, Florence</creatorcontrib><creatorcontrib>Ruffion, Alain</creatorcontrib><creatorcontrib>Crouzet, Sébastien</creatorcontrib><creatorcontrib>Colombel, Marc</creatorcontrib><creatorcontrib>Rabilloud, Muriel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouvière, Olivier</au><au>Dagonneau, Tristan</au><au>Cros, Fanny</au><au>Bratan, Flavie</au><au>Roche, Laurent</au><au>Mège-Lechevallier, Florence</au><au>Ruffion, Alain</au><au>Crouzet, Sébastien</au><au>Colombel, Marc</au><au>Rabilloud, Muriel</au><au>Sung, Shian-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-06-09</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>e0178901</spage><epage>e0178901</epage><pages>e0178901-e0178901</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To assess the diagnostic weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers (csPCa). We used a prospective database of 262 patients who underwent T2-weighted, diffusion-weighted, and dynamic contrast-enhanced (DCE) imaging before prostatectomy. For each lesion, two independent readers (R1, R2) prospectively defined nine features: shape, volume (V_Max), signal abnormality on each pulse sequence, number of pulse sequences with a marked (S_Max) and non-visible (S_Min) abnormality, likelihood of extracapsular extension (ECE) and PSA density (dPSA). Overall likelihood of malignancy was assessed using a 5-level Likert score. Features were evaluated using the area under the receiver operating characteristic curve (AUC). csPCa was defined as Gleason ≥7 cancer (csPCa-A), Gleason ≥7(4+3) cancer (csPCa-B) or Gleason ≥7 cancer with histological extraprostatic extension (csPCa-C). For csPCa-A, the Signal1 model (S_Max+S_Min) provided the best combination of signal-related variables, for both readers. The performance was improved by adding V_Max, ECE and/or dPSA, but not shape. All models performed better with DCE findings than without. When moving from csPCa-A to csPCa-B and csPCa-C definitions, the added value of V_Max, dPSA and ECE increased as compared to signal-related variables, and the added value of DCE decreased. For R1, the best models were Signal1+ECE+dPSA (AUC = 0,805 [95%CI:0,757-0,866]), Signal1+V_Max+dPSA (AUC = 0.823 [95%CI:0.760-0.893]) and Signal1+ECE+dPSA [AUC = 0.840 (95%CI:0.774-0.907)] for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0.844 [95%CI:0.806-0.877, p = 0.11], 0.841 [95%CI:0.799-0.876, p = 0.52]) and 0.849 [95%CI:0.811-0.884, p = 0.49], respectively. For R2, the best models were Signal1+V_Max+dPSA (AUC = 0,790 [95%CI:0,731-0,857]), Signal1+V_Max (AUC = 0.813 [95%CI:0.746-0.882]) and Signal1+ECE+V_Max (AUC = 0.843 [95%CI: 0.781-0.907]) for csPCa-A, csPCA-B and csPCA-C respectively. The AUCs of the corresponding Likert scores were 0. 829 [95%CI:0.791-0.868, p = 0.13], 0.790 [95%CI:0.742-0.841, p = 0.12]) and 0.808 [95%CI:0.764-0.845, p = 0.006]), respectively. Combination of simple variables can match the Likert score's results. The optimal combination depends on the definition of csPCa.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28599001</pmid><doi>10.1371/journal.pone.0178901</doi><tpages>e0178901</tpages><orcidid>https://orcid.org/0000-0002-0030-478X</orcidid><orcidid>https://orcid.org/0000-0001-8946-4917</orcidid><orcidid>https://orcid.org/0000-0003-1324-0356</orcidid><orcidid>https://orcid.org/0000-0003-0512-3459</orcidid><orcidid>https://orcid.org/0000-0003-0435-3324</orcidid><orcidid>https://orcid.org/0000-0001-5812-6771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-06, Vol.12 (6), p.e0178901-e0178901
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1907781520
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Accuracy
Aged
Antigens
Area Under Curve
Bioengineering
Biology and Life Sciences
Cancer
Cancer surgery
Care and treatment
Clinical significance
Density
Diagnosis
Diagnostic systems
Diagnostic tests
Diffusion
Diffusion Magnetic Resonance Imaging
Human health and pathology
Humans
Image Enhancement
Imaging
Life Sciences
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Malignancy
Mathematical models
Medical diagnosis
Medicine and Health Sciences
Middle Aged
NMR
Nuclear magnetic resonance
Optimization
Patients
Prostate cancer
Prostatectomy
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - pathology
Prostatic Neoplasms - surgery
Readers
Research and Analysis Methods
Resonance
ROC Curve
Sequences
Urological surgery
Urology
Urology and Nephrology
title Diagnostic value and relative weight of sequence-specific magnetic resonance features in characterizing clinically significant prostate cancers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnostic%20value%20and%20relative%20weight%20of%20sequence-specific%20magnetic%20resonance%20features%20in%20characterizing%20clinically%20significant%20prostate%20cancers&rft.jtitle=PloS%20one&rft.au=Rouvi%C3%A8re,%20Olivier&rft.date=2017-06-09&rft.volume=12&rft.issue=6&rft.spage=e0178901&rft.epage=e0178901&rft.pages=e0178901-e0178901&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0178901&rft_dat=%3Cgale_plos_%3EA494977815%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c726t-7f1f54d970165ad30b194695128e47a20da275421b1fc3dbde4356c7016425d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1907781520&rft_id=info:pmid/28599001&rft_galeid=A494977815&rfr_iscdi=true