Loading…

Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition

Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These pro...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2017-05, Vol.13 (5), p.e1006757-e1006757
Main Authors: Wagner, Gabriele, Singhal, Nishant, Nicetto, Dario, Straub, Tobias, Kremmer, Elisabeth, Rupp, Ralph A W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c777t-b918a3f02b56b2ae4f6a937e000eb30a4953a7f55086752c8f75a725a61714543
cites cdi_FETCH-LOGICAL-c777t-b918a3f02b56b2ae4f6a937e000eb30a4953a7f55086752c8f75a725a61714543
container_end_page e1006757
container_issue 5
container_start_page e1006757
container_title PLoS genetics
container_volume 13
creator Wagner, Gabriele
Singhal, Nishant
Nicetto, Dario
Straub, Tobias
Kremmer, Elisabeth
Rupp, Ralph A W
description Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning.
doi_str_mv 10.1371/journal.pgen.1006757
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1910462988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493733373</galeid><doaj_id>oai_doaj_org_article_984f0d6506b64663b5e8539ef6b9aa45</doaj_id><sourcerecordid>A493733373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c777t-b918a3f02b56b2ae4f6a937e000eb30a4953a7f55086752c8f75a725a61714543</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLgujFjEmTNO2NMC5-DCyu6OptOO2cdrKkzZik4lz6z02d7jIje6GU0DZ5zpuc9-QkyWNKFpRJ-urKDq4Hs9i22C8oIbkU8k5ySoVgc8kJv3vwfZI88P6KECaKUt5PTrKCl0UhyWny641raVpvnO0g6D512Nk1Gt236fLyE3hMKzDQ1-jTFl2XGtihS7cQArp-pKpdCt3W6GY3_oUNpsFB72unt0HbeMC0GpwPKYS00-vKgA-DgT2kR-Jhcq8B4_HR9J4lX9-9vTz7MD-_eL86W57PayllmFclLYA1JKtEXmWAvMmhZBIJIVgxArwUDGQjBCmiE1ldNFKAzATkVFIuOJslT_e6W2O9mtzzipaU8DyLdkRitSfWFq7U1ukO3E5Z0OrPhHWtAhd0bVCVBW_IOhckr3Ke56wSWAhWYpNXJQAXUev1tNtQdbiusY8ZmyPR45Veb1RrfyjBsyKmGgVeTALOfh_QB9VpX6OJxUA7xHMXZUmpyOWY2bO_0Nuzm6gWYgK6b2zctx5F1ZJHJxkbxyxZ3ELFZ42drm2PjY7zRwEvjwIiE_BnaGHwXq2-fP4P9uO_sxffjtnnB-wGwYSNt2YYr5c_BvkerJ313mFzUxBK1NhV186psavU1FUx7MlhMW-CrtuI_QZd7hzl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910462988</pqid></control><display><type>article</type><title>Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Wagner, Gabriele ; Singhal, Nishant ; Nicetto, Dario ; Straub, Tobias ; Kremmer, Elisabeth ; Rupp, Ralph A W</creator><contributor>Yang, Jing</contributor><creatorcontrib>Wagner, Gabriele ; Singhal, Nishant ; Nicetto, Dario ; Straub, Tobias ; Kremmer, Elisabeth ; Rupp, Ralph A W ; Yang, Jing</creatorcontrib><description>Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006757</identifier><identifier>PMID: 28498870</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine triphosphatase ; Adenosine Triphosphatases - genetics ; Animals ; Biology and Life Sciences ; Blastula ; Blastula - growth &amp; development ; Blastula - metabolism ; Bone morphogenetic proteins ; BRG1 protein ; Bursting ; Cell Differentiation - genetics ; Cellular structure ; Chromatin ; Chromatin - genetics ; Chromatin remodeling ; Chromosomal Proteins, Non-Histone - genetics ; Colleges &amp; universities ; Cooperation ; Developmental biology ; Developmental plasticity ; DNA Helicases - biosynthesis ; DNA Helicases - genetics ; Embryogenesis ; Embryonic Development - genetics ; Embryos ; Gastrulation ; Gene expression ; Gene Expression Regulation, Developmental ; Genetic aspects ; Genome ; Genomes ; Group dynamics ; Laboratories ; Lethality ; Maternal Inheritance - genetics ; Microinjection ; Nervous system ; Pattern formation ; Plastic foam ; Plastic properties ; Proteins ; Research and Analysis Methods ; Stem cells ; Systems development ; Transcription (Genetics) ; Transcription activation ; Transcription Factors - genetics ; Transcription, Genetic ; Wnt protein ; Wnt Signaling Pathway - genetics ; Xenopus ; Xenopus - genetics ; Xenopus - growth &amp; development ; Zygote - growth &amp; development ; Zygote - metabolism</subject><ispartof>PLoS genetics, 2017-05, Vol.13 (5), p.e1006757-e1006757</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wagner G, Singhal N, Nicetto D, Straub T, Kremmer E, Rupp RAW (2017) Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition. PLoS Genet 13(5): e1006757. https://doi.org/10.1371/journal.pgen.1006757</rights><rights>2017 Wagner et al 2017 Wagner et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wagner G, Singhal N, Nicetto D, Straub T, Kremmer E, Rupp RAW (2017) Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition. PLoS Genet 13(5): e1006757. https://doi.org/10.1371/journal.pgen.1006757</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c777t-b918a3f02b56b2ae4f6a937e000eb30a4953a7f55086752c8f75a725a61714543</citedby><cites>FETCH-LOGICAL-c777t-b918a3f02b56b2ae4f6a937e000eb30a4953a7f55086752c8f75a725a61714543</cites><orcidid>0000-0002-7988-5125 ; 0000-0002-0547-0453 ; 0000-0002-8068-9957 ; 0000-0002-8133-8374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1910462988/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1910462988?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28498870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yang, Jing</contributor><creatorcontrib>Wagner, Gabriele</creatorcontrib><creatorcontrib>Singhal, Nishant</creatorcontrib><creatorcontrib>Nicetto, Dario</creatorcontrib><creatorcontrib>Straub, Tobias</creatorcontrib><creatorcontrib>Kremmer, Elisabeth</creatorcontrib><creatorcontrib>Rupp, Ralph A W</creatorcontrib><title>Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning.</description><subject>Adenosine triphosphatase</subject><subject>Adenosine Triphosphatases - genetics</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blastula</subject><subject>Blastula - growth &amp; development</subject><subject>Blastula - metabolism</subject><subject>Bone morphogenetic proteins</subject><subject>BRG1 protein</subject><subject>Bursting</subject><subject>Cell Differentiation - genetics</subject><subject>Cellular structure</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin remodeling</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Colleges &amp; universities</subject><subject>Cooperation</subject><subject>Developmental biology</subject><subject>Developmental plasticity</subject><subject>DNA Helicases - biosynthesis</subject><subject>DNA Helicases - genetics</subject><subject>Embryogenesis</subject><subject>Embryonic Development - genetics</subject><subject>Embryos</subject><subject>Gastrulation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic aspects</subject><subject>Genome</subject><subject>Genomes</subject><subject>Group dynamics</subject><subject>Laboratories</subject><subject>Lethality</subject><subject>Maternal Inheritance - genetics</subject><subject>Microinjection</subject><subject>Nervous system</subject><subject>Pattern formation</subject><subject>Plastic foam</subject><subject>Plastic properties</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Stem cells</subject><subject>Systems development</subject><subject>Transcription (Genetics)</subject><subject>Transcription activation</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - genetics</subject><subject>Xenopus</subject><subject>Xenopus - genetics</subject><subject>Xenopus - growth &amp; development</subject><subject>Zygote - growth &amp; development</subject><subject>Zygote - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLgujFjEmTNO2NMC5-DCyu6OptOO2cdrKkzZik4lz6z02d7jIje6GU0DZ5zpuc9-QkyWNKFpRJ-urKDq4Hs9i22C8oIbkU8k5ySoVgc8kJv3vwfZI88P6KECaKUt5PTrKCl0UhyWny641raVpvnO0g6D512Nk1Gt236fLyE3hMKzDQ1-jTFl2XGtihS7cQArp-pKpdCt3W6GY3_oUNpsFB72unt0HbeMC0GpwPKYS00-vKgA-DgT2kR-Jhcq8B4_HR9J4lX9-9vTz7MD-_eL86W57PayllmFclLYA1JKtEXmWAvMmhZBIJIVgxArwUDGQjBCmiE1ldNFKAzATkVFIuOJslT_e6W2O9mtzzipaU8DyLdkRitSfWFq7U1ukO3E5Z0OrPhHWtAhd0bVCVBW_IOhckr3Ke56wSWAhWYpNXJQAXUev1tNtQdbiusY8ZmyPR45Veb1RrfyjBsyKmGgVeTALOfh_QB9VpX6OJxUA7xHMXZUmpyOWY2bO_0Nuzm6gWYgK6b2zctx5F1ZJHJxkbxyxZ3ELFZ42drm2PjY7zRwEvjwIiE_BnaGHwXq2-fP4P9uO_sxffjtnnB-wGwYSNt2YYr5c_BvkerJ313mFzUxBK1NhV186psavU1FUx7MlhMW-CrtuI_QZd7hzl</recordid><startdate>20170512</startdate><enddate>20170512</enddate><creator>Wagner, Gabriele</creator><creator>Singhal, Nishant</creator><creator>Nicetto, Dario</creator><creator>Straub, Tobias</creator><creator>Kremmer, Elisabeth</creator><creator>Rupp, Ralph A W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7988-5125</orcidid><orcidid>https://orcid.org/0000-0002-0547-0453</orcidid><orcidid>https://orcid.org/0000-0002-8068-9957</orcidid><orcidid>https://orcid.org/0000-0002-8133-8374</orcidid></search><sort><creationdate>20170512</creationdate><title>Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition</title><author>Wagner, Gabriele ; Singhal, Nishant ; Nicetto, Dario ; Straub, Tobias ; Kremmer, Elisabeth ; Rupp, Ralph A W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c777t-b918a3f02b56b2ae4f6a937e000eb30a4953a7f55086752c8f75a725a61714543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine triphosphatase</topic><topic>Adenosine Triphosphatases - genetics</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blastula</topic><topic>Blastula - growth &amp; development</topic><topic>Blastula - metabolism</topic><topic>Bone morphogenetic proteins</topic><topic>BRG1 protein</topic><topic>Bursting</topic><topic>Cell Differentiation - genetics</topic><topic>Cellular structure</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin remodeling</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Colleges &amp; universities</topic><topic>Cooperation</topic><topic>Developmental biology</topic><topic>Developmental plasticity</topic><topic>DNA Helicases - biosynthesis</topic><topic>DNA Helicases - genetics</topic><topic>Embryogenesis</topic><topic>Embryonic Development - genetics</topic><topic>Embryos</topic><topic>Gastrulation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic aspects</topic><topic>Genome</topic><topic>Genomes</topic><topic>Group dynamics</topic><topic>Laboratories</topic><topic>Lethality</topic><topic>Maternal Inheritance - genetics</topic><topic>Microinjection</topic><topic>Nervous system</topic><topic>Pattern formation</topic><topic>Plastic foam</topic><topic>Plastic properties</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Stem cells</topic><topic>Systems development</topic><topic>Transcription (Genetics)</topic><topic>Transcription activation</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - genetics</topic><topic>Xenopus</topic><topic>Xenopus - genetics</topic><topic>Xenopus - growth &amp; development</topic><topic>Zygote - growth &amp; development</topic><topic>Zygote - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Gabriele</creatorcontrib><creatorcontrib>Singhal, Nishant</creatorcontrib><creatorcontrib>Nicetto, Dario</creatorcontrib><creatorcontrib>Straub, Tobias</creatorcontrib><creatorcontrib>Kremmer, Elisabeth</creatorcontrib><creatorcontrib>Rupp, Ralph A W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Gabriele</au><au>Singhal, Nishant</au><au>Nicetto, Dario</au><au>Straub, Tobias</au><au>Kremmer, Elisabeth</au><au>Rupp, Ralph A W</au><au>Yang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-05-12</date><risdate>2017</risdate><volume>13</volume><issue>5</issue><spage>e1006757</spage><epage>e1006757</epage><pages>e1006757-e1006757</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Zygotic gene expression programs control cell differentiation in vertebrate development. In Xenopus, these programs are initiated by local induction of regulatory genes through maternal signaling activities in the wake of zygotic genome activation (ZGA) at the midblastula transition (MBT). These programs lay down the vertebrate body plan through gastrulation and neurulation, and are accompanied by massive changes in chromatin structure, which increasingly constrain cellular plasticity. Here we report on developmental functions for Brahma related gene 1 (Brg1), a key component of embyronic SWI/SNF chromatin remodeling complexes. Carefully controlled, global Brg1 protein depletion in X. tropicalis and X. laevis causes embryonic lethality or developmental arrest from gastrulation on. Transcriptome analysis at late blastula, before development becomes arrested, indicates predominantly a role for Brg1 in transcriptional activation of a limited set of genes involved in pattern specification processes and nervous system development. Mosaic analysis by targeted microinjection defines Brg1 as an essential amplifier of gene expression in dorsal (BCNE/Nieuwkoop Center) and ventral (BMP/Vent) signaling centers. Moreover, Brg1 is required and sufficient for initiating axial patterning in cooperation with maternal Wnt signaling. In search for a common denominator of Brg1 impact on development, we have quantitatively filtered global mRNA fluctuations at MBT. The results indicate that Brg1 is predominantly required for genes with the highest burst of transcriptional activity. Since this group contains many key developmental regulators, we propose Brg1 to be responsible for raising their expression above threshold levels in preparation for embryonic patterning.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28498870</pmid><doi>10.1371/journal.pgen.1006757</doi><orcidid>https://orcid.org/0000-0002-7988-5125</orcidid><orcidid>https://orcid.org/0000-0002-0547-0453</orcidid><orcidid>https://orcid.org/0000-0002-8068-9957</orcidid><orcidid>https://orcid.org/0000-0002-8133-8374</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2017-05, Vol.13 (5), p.e1006757-e1006757
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1910462988
source Access via ProQuest (Open Access); PubMed Central
subjects Adenosine triphosphatase
Adenosine Triphosphatases - genetics
Animals
Biology and Life Sciences
Blastula
Blastula - growth & development
Blastula - metabolism
Bone morphogenetic proteins
BRG1 protein
Bursting
Cell Differentiation - genetics
Cellular structure
Chromatin
Chromatin - genetics
Chromatin remodeling
Chromosomal Proteins, Non-Histone - genetics
Colleges & universities
Cooperation
Developmental biology
Developmental plasticity
DNA Helicases - biosynthesis
DNA Helicases - genetics
Embryogenesis
Embryonic Development - genetics
Embryos
Gastrulation
Gene expression
Gene Expression Regulation, Developmental
Genetic aspects
Genome
Genomes
Group dynamics
Laboratories
Lethality
Maternal Inheritance - genetics
Microinjection
Nervous system
Pattern formation
Plastic foam
Plastic properties
Proteins
Research and Analysis Methods
Stem cells
Systems development
Transcription (Genetics)
Transcription activation
Transcription Factors - genetics
Transcription, Genetic
Wnt protein
Wnt Signaling Pathway - genetics
Xenopus
Xenopus - genetics
Xenopus - growth & development
Zygote - growth & development
Zygote - metabolism
title Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brg1%20chromatin%20remodeling%20ATPase%20balances%20germ%20layer%20patterning%20by%20amplifying%20the%20transcriptional%20burst%20at%20midblastula%20transition&rft.jtitle=PLoS%20genetics&rft.au=Wagner,%20Gabriele&rft.date=2017-05-12&rft.volume=13&rft.issue=5&rft.spage=e1006757&rft.epage=e1006757&rft.pages=e1006757-e1006757&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006757&rft_dat=%3Cgale_plos_%3EA493733373%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c777t-b918a3f02b56b2ae4f6a937e000eb30a4953a7f55086752c8f75a725a61714543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1910462988&rft_id=info:pmid/28498870&rft_galeid=A493733373&rfr_iscdi=true