Loading…
Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia
Biliary atresia is progressive fibro-inflammatory cholangiopathy of young children. Central to pathogenic mechanisms of injury is the tissue targeting by the innate and adaptive immune cells. Among these cells, neutrophils and the IL-8/Cxcl-8 signaling via its Cxcr2 receptor have been linked to bile...
Saved in:
Published in: | PloS one 2017-08, Vol.12 (8), p.e0182089-e0182089 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-61ec75484b51592922cf446793f369a07c41b1ee0329766c00e4eccdaed9c4ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-61ec75484b51592922cf446793f369a07c41b1ee0329766c00e4eccdaed9c4ed3 |
container_end_page | e0182089 |
container_issue | 8 |
container_start_page | e0182089 |
container_title | PloS one |
container_volume | 12 |
creator | Jee, Junbae Mourya, Reena Shivakumar, Pranavkumar Fei, Lin Wagner, Michael Bezerra, Jorge A |
description | Biliary atresia is progressive fibro-inflammatory cholangiopathy of young children. Central to pathogenic mechanisms of injury is the tissue targeting by the innate and adaptive immune cells. Among these cells, neutrophils and the IL-8/Cxcl-8 signaling via its Cxcr2 receptor have been linked to bile duct injury. Here, we aimed to investigate whether the intestinal microbiome modulates Cxcr2-dependent bile duct injury and obstruction. Adult wild-type (WT) and Cxcr2-/- mice were fed a diet supplemented with sulfamethoxazole/trimethoprim (SMZ/TMP) during pregnancy and lactation, and their pups were injected intraperitoneally with rhesus rotavirus (RRV) within 24 hours of life to induce experimental biliary atresia. The maternal exposure to SMZ/TMP significantly lowered the incidence of jaundice and bile duct obstruction and resulted in improved survival, especially in Cxcr2-/- mice. Analyses of the microbiome by deep sequencing of 16S rRNA of the neonatal colon showed a delay in bacterial colonization of WT mice induced by SMZ/TMP, with a notable switch from Proteobacteria to Firmicutes. Interestingly, the genetic inactivation of Cxcr2 alone produced a similar bacterial shift. When treated with SMZ/TMP, Cxcr2-/- mice infected with RRV to induce experimental biliary atresia showed further enrichment of Corynebacterium, Anaerococcus and Streptococcus. Among these, Anaerococcus lactolyticus was significantly associated with a suppression of biliary injury, cholestasis, and survivability. These results suggest that the postnatal development of the intestinal microbiota is an important susceptibility factor for experimental biliary atresia. |
doi_str_mv | 10.1371/journal.pone.0182089 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1925191679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499700389</galeid><doaj_id>oai_doaj_org_article_e4441947fa45492a9aa69745227c00a8</doaj_id><sourcerecordid>A499700389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-61ec75484b51592922cf446793f369a07c41b1ee0329766c00e4eccdaed9c4ed3</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQLgijsjEmaNs2LsAxeBhYWvL2GTHrayZA2NUll5sHvbup0hxnZB-lDQ_I7_3NPkucYLXDG8LutHVwnzaK3HSwQLgkq-YPkEvOMzAuCsocn54vkifdbhPKsLIrHyQUpWZHRMr9Mfi93ypHU6yZq6a5JZVelYQNpq5Wza21bSP3Q9w68T3VXG9m2MmjbXaVrbSCtBhXi_XZw-6ujbb-BzoZ9D6mtU9j14HQLXZBmtNHS7VMZoqCWT5NHtTQenk3_WfL944dvy8_zm9tPq-X1zVyxvAzzAkM80JKuc5xzwglRNaUF41mdFVwipiheYwCUEc6KQiEEFJSqJFRcUaiyWfLyoNsb68VUOS8wJznmeBSaJasDUVm5FX0MOIYprNTi74V1jZAuaGVAAKUUc8pqSXPKieRSFpzRnBAWPcsyar2fvA3rFioVU3fSnImev3R6Ixr7S-RjfxiLAm8mAWd_DuCDaLVXYIzswA6HuGMlCKcRffUPen92E9XImEBso41-1SgqrinnDKGsHKnFPVT8KojTEMesjh0_N3h7ZhCZALvQyMF7sfr65f_Z2x_n7OsTdgPShI23Zhjnzp-D9ADGWfXeQX0sMkZi3JK7aohxS8S0JdHsxWmDjkZ3a5H9AR0iDZw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925191679</pqid></control><display><type>article</type><title>Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Jee, Junbae ; Mourya, Reena ; Shivakumar, Pranavkumar ; Fei, Lin ; Wagner, Michael ; Bezerra, Jorge A</creator><contributor>Alpini, Gianfranco D.</contributor><creatorcontrib>Jee, Junbae ; Mourya, Reena ; Shivakumar, Pranavkumar ; Fei, Lin ; Wagner, Michael ; Bezerra, Jorge A ; Alpini, Gianfranco D.</creatorcontrib><description>Biliary atresia is progressive fibro-inflammatory cholangiopathy of young children. Central to pathogenic mechanisms of injury is the tissue targeting by the innate and adaptive immune cells. Among these cells, neutrophils and the IL-8/Cxcl-8 signaling via its Cxcr2 receptor have been linked to bile duct injury. Here, we aimed to investigate whether the intestinal microbiome modulates Cxcr2-dependent bile duct injury and obstruction. Adult wild-type (WT) and Cxcr2-/- mice were fed a diet supplemented with sulfamethoxazole/trimethoprim (SMZ/TMP) during pregnancy and lactation, and their pups were injected intraperitoneally with rhesus rotavirus (RRV) within 24 hours of life to induce experimental biliary atresia. The maternal exposure to SMZ/TMP significantly lowered the incidence of jaundice and bile duct obstruction and resulted in improved survival, especially in Cxcr2-/- mice. Analyses of the microbiome by deep sequencing of 16S rRNA of the neonatal colon showed a delay in bacterial colonization of WT mice induced by SMZ/TMP, with a notable switch from Proteobacteria to Firmicutes. Interestingly, the genetic inactivation of Cxcr2 alone produced a similar bacterial shift. When treated with SMZ/TMP, Cxcr2-/- mice infected with RRV to induce experimental biliary atresia showed further enrichment of Corynebacterium, Anaerococcus and Streptococcus. Among these, Anaerococcus lactolyticus was significantly associated with a suppression of biliary injury, cholestasis, and survivability. These results suggest that the postnatal development of the intestinal microbiota is an important susceptibility factor for experimental biliary atresia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0182089</identifier><identifier>PMID: 28763485</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antibiotics ; Bacteria ; Bile ; Bile ducts ; Bile Ducts - injuries ; Biliary atresia ; Biliary Atresia - metabolism ; Biliary Atresia - microbiology ; Biology and Life Sciences ; Cellular signal transduction ; Cholestasis ; Colon ; Colonization ; Complications and side effects ; CXCR2 protein ; Deactivation ; Development and progression ; Disease Models, Animal ; Female ; Gastroenterology ; Gene expression ; Gene Expression Profiling ; Genetic aspects ; Hepatology ; Immune system ; Inactivation ; Inflammation ; Inflammation - metabolism ; Inflammatory bowel disease ; Injuries ; Interleukin 8 ; Intestinal microflora ; Intestine ; Jaundice ; Lactation ; Leukocytes (neutrophilic) ; Linear Models ; Lymphocytes ; Macaca mulatta ; Medicine and Health Sciences ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Microbiota ; Microbiota (Symbiotic organisms) ; Mortality ; Neonates ; Neutrophils ; Nutrition ; Pathogenesis ; Pathogens ; Phenotype ; Physical Sciences ; Physiological aspects ; Polymerase Chain Reaction ; Pregnancy ; Pregnancy, Animal ; Prevention ; Receptors, Interleukin-8B - genetics ; Receptors, Interleukin-8B - metabolism ; Research and Analysis Methods ; Risk factors ; RNA, Ribosomal, 16S - genetics ; Rotavirus ; rRNA 16S ; Signal Transduction ; Sulfamethoxazole ; Sulfamethoxazole - administration & dosage ; Survivability ; Trimethoprim ; Trimethoprim - administration & dosage ; Viruses</subject><ispartof>PloS one, 2017-08, Vol.12 (8), p.e0182089-e0182089</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Jee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Jee et al 2017 Jee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-61ec75484b51592922cf446793f369a07c41b1ee0329766c00e4eccdaed9c4ed3</citedby><cites>FETCH-LOGICAL-c758t-61ec75484b51592922cf446793f369a07c41b1ee0329766c00e4eccdaed9c4ed3</cites><orcidid>0000-0001-9667-7742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1925191679/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1925191679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28763485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alpini, Gianfranco D.</contributor><creatorcontrib>Jee, Junbae</creatorcontrib><creatorcontrib>Mourya, Reena</creatorcontrib><creatorcontrib>Shivakumar, Pranavkumar</creatorcontrib><creatorcontrib>Fei, Lin</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Bezerra, Jorge A</creatorcontrib><title>Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Biliary atresia is progressive fibro-inflammatory cholangiopathy of young children. Central to pathogenic mechanisms of injury is the tissue targeting by the innate and adaptive immune cells. Among these cells, neutrophils and the IL-8/Cxcl-8 signaling via its Cxcr2 receptor have been linked to bile duct injury. Here, we aimed to investigate whether the intestinal microbiome modulates Cxcr2-dependent bile duct injury and obstruction. Adult wild-type (WT) and Cxcr2-/- mice were fed a diet supplemented with sulfamethoxazole/trimethoprim (SMZ/TMP) during pregnancy and lactation, and their pups were injected intraperitoneally with rhesus rotavirus (RRV) within 24 hours of life to induce experimental biliary atresia. The maternal exposure to SMZ/TMP significantly lowered the incidence of jaundice and bile duct obstruction and resulted in improved survival, especially in Cxcr2-/- mice. Analyses of the microbiome by deep sequencing of 16S rRNA of the neonatal colon showed a delay in bacterial colonization of WT mice induced by SMZ/TMP, with a notable switch from Proteobacteria to Firmicutes. Interestingly, the genetic inactivation of Cxcr2 alone produced a similar bacterial shift. When treated with SMZ/TMP, Cxcr2-/- mice infected with RRV to induce experimental biliary atresia showed further enrichment of Corynebacterium, Anaerococcus and Streptococcus. Among these, Anaerococcus lactolyticus was significantly associated with a suppression of biliary injury, cholestasis, and survivability. These results suggest that the postnatal development of the intestinal microbiota is an important susceptibility factor for experimental biliary atresia.</description><subject>Animals</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bile</subject><subject>Bile ducts</subject><subject>Bile Ducts - injuries</subject><subject>Biliary atresia</subject><subject>Biliary Atresia - metabolism</subject><subject>Biliary Atresia - microbiology</subject><subject>Biology and Life Sciences</subject><subject>Cellular signal transduction</subject><subject>Cholestasis</subject><subject>Colon</subject><subject>Colonization</subject><subject>Complications and side effects</subject><subject>CXCR2 protein</subject><subject>Deactivation</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Gastroenterology</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Hepatology</subject><subject>Immune system</subject><subject>Inactivation</subject><subject>Inflammation</subject><subject>Inflammation - metabolism</subject><subject>Inflammatory bowel disease</subject><subject>Injuries</subject><subject>Interleukin 8</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Jaundice</subject><subject>Lactation</subject><subject>Leukocytes (neutrophilic)</subject><subject>Linear Models</subject><subject>Lymphocytes</subject><subject>Macaca mulatta</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Mortality</subject><subject>Neonates</subject><subject>Neutrophils</subject><subject>Nutrition</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Phenotype</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polymerase Chain Reaction</subject><subject>Pregnancy</subject><subject>Pregnancy, Animal</subject><subject>Prevention</subject><subject>Receptors, Interleukin-8B - genetics</subject><subject>Receptors, Interleukin-8B - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Rotavirus</subject><subject>rRNA 16S</subject><subject>Signal Transduction</subject><subject>Sulfamethoxazole</subject><subject>Sulfamethoxazole - administration & dosage</subject><subject>Survivability</subject><subject>Trimethoprim</subject><subject>Trimethoprim - administration & dosage</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQLgijsjEmaNs2LsAxeBhYWvL2GTHrayZA2NUll5sHvbup0hxnZB-lDQ_I7_3NPkucYLXDG8LutHVwnzaK3HSwQLgkq-YPkEvOMzAuCsocn54vkifdbhPKsLIrHyQUpWZHRMr9Mfi93ypHU6yZq6a5JZVelYQNpq5Wza21bSP3Q9w68T3VXG9m2MmjbXaVrbSCtBhXi_XZw-6ujbb-BzoZ9D6mtU9j14HQLXZBmtNHS7VMZoqCWT5NHtTQenk3_WfL944dvy8_zm9tPq-X1zVyxvAzzAkM80JKuc5xzwglRNaUF41mdFVwipiheYwCUEc6KQiEEFJSqJFRcUaiyWfLyoNsb68VUOS8wJznmeBSaJasDUVm5FX0MOIYprNTi74V1jZAuaGVAAKUUc8pqSXPKieRSFpzRnBAWPcsyar2fvA3rFioVU3fSnImev3R6Ixr7S-RjfxiLAm8mAWd_DuCDaLVXYIzswA6HuGMlCKcRffUPen92E9XImEBso41-1SgqrinnDKGsHKnFPVT8KojTEMesjh0_N3h7ZhCZALvQyMF7sfr65f_Z2x_n7OsTdgPShI23Zhjnzp-D9ADGWfXeQX0sMkZi3JK7aohxS8S0JdHsxWmDjkZ3a5H9AR0iDZw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Jee, Junbae</creator><creator>Mourya, Reena</creator><creator>Shivakumar, Pranavkumar</creator><creator>Fei, Lin</creator><creator>Wagner, Michael</creator><creator>Bezerra, Jorge A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9667-7742</orcidid></search><sort><creationdate>20170801</creationdate><title>Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia</title><author>Jee, Junbae ; Mourya, Reena ; Shivakumar, Pranavkumar ; Fei, Lin ; Wagner, Michael ; Bezerra, Jorge A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-61ec75484b51592922cf446793f369a07c41b1ee0329766c00e4eccdaed9c4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bile</topic><topic>Bile ducts</topic><topic>Bile Ducts - injuries</topic><topic>Biliary atresia</topic><topic>Biliary Atresia - metabolism</topic><topic>Biliary Atresia - microbiology</topic><topic>Biology and Life Sciences</topic><topic>Cellular signal transduction</topic><topic>Cholestasis</topic><topic>Colon</topic><topic>Colonization</topic><topic>Complications and side effects</topic><topic>CXCR2 protein</topic><topic>Deactivation</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Gastroenterology</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Hepatology</topic><topic>Immune system</topic><topic>Inactivation</topic><topic>Inflammation</topic><topic>Inflammation - metabolism</topic><topic>Inflammatory bowel disease</topic><topic>Injuries</topic><topic>Interleukin 8</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Jaundice</topic><topic>Lactation</topic><topic>Leukocytes (neutrophilic)</topic><topic>Linear Models</topic><topic>Lymphocytes</topic><topic>Macaca mulatta</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Mortality</topic><topic>Neonates</topic><topic>Neutrophils</topic><topic>Nutrition</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Phenotype</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polymerase Chain Reaction</topic><topic>Pregnancy</topic><topic>Pregnancy, Animal</topic><topic>Prevention</topic><topic>Receptors, Interleukin-8B - genetics</topic><topic>Receptors, Interleukin-8B - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Rotavirus</topic><topic>rRNA 16S</topic><topic>Signal Transduction</topic><topic>Sulfamethoxazole</topic><topic>Sulfamethoxazole - administration & dosage</topic><topic>Survivability</topic><topic>Trimethoprim</topic><topic>Trimethoprim - administration & dosage</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jee, Junbae</creatorcontrib><creatorcontrib>Mourya, Reena</creatorcontrib><creatorcontrib>Shivakumar, Pranavkumar</creatorcontrib><creatorcontrib>Fei, Lin</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Bezerra, Jorge A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jee, Junbae</au><au>Mourya, Reena</au><au>Shivakumar, Pranavkumar</au><au>Fei, Lin</au><au>Wagner, Michael</au><au>Bezerra, Jorge A</au><au>Alpini, Gianfranco D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>e0182089</spage><epage>e0182089</epage><pages>e0182089-e0182089</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Biliary atresia is progressive fibro-inflammatory cholangiopathy of young children. Central to pathogenic mechanisms of injury is the tissue targeting by the innate and adaptive immune cells. Among these cells, neutrophils and the IL-8/Cxcl-8 signaling via its Cxcr2 receptor have been linked to bile duct injury. Here, we aimed to investigate whether the intestinal microbiome modulates Cxcr2-dependent bile duct injury and obstruction. Adult wild-type (WT) and Cxcr2-/- mice were fed a diet supplemented with sulfamethoxazole/trimethoprim (SMZ/TMP) during pregnancy and lactation, and their pups were injected intraperitoneally with rhesus rotavirus (RRV) within 24 hours of life to induce experimental biliary atresia. The maternal exposure to SMZ/TMP significantly lowered the incidence of jaundice and bile duct obstruction and resulted in improved survival, especially in Cxcr2-/- mice. Analyses of the microbiome by deep sequencing of 16S rRNA of the neonatal colon showed a delay in bacterial colonization of WT mice induced by SMZ/TMP, with a notable switch from Proteobacteria to Firmicutes. Interestingly, the genetic inactivation of Cxcr2 alone produced a similar bacterial shift. When treated with SMZ/TMP, Cxcr2-/- mice infected with RRV to induce experimental biliary atresia showed further enrichment of Corynebacterium, Anaerococcus and Streptococcus. Among these, Anaerococcus lactolyticus was significantly associated with a suppression of biliary injury, cholestasis, and survivability. These results suggest that the postnatal development of the intestinal microbiota is an important susceptibility factor for experimental biliary atresia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28763485</pmid><doi>10.1371/journal.pone.0182089</doi><tpages>e0182089</tpages><orcidid>https://orcid.org/0000-0001-9667-7742</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-08, Vol.12 (8), p.e0182089-e0182089 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1925191679 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Antibiotics Bacteria Bile Bile ducts Bile Ducts - injuries Biliary atresia Biliary Atresia - metabolism Biliary Atresia - microbiology Biology and Life Sciences Cellular signal transduction Cholestasis Colon Colonization Complications and side effects CXCR2 protein Deactivation Development and progression Disease Models, Animal Female Gastroenterology Gene expression Gene Expression Profiling Genetic aspects Hepatology Immune system Inactivation Inflammation Inflammation - metabolism Inflammatory bowel disease Injuries Interleukin 8 Intestinal microflora Intestine Jaundice Lactation Leukocytes (neutrophilic) Linear Models Lymphocytes Macaca mulatta Medicine and Health Sciences Mice Mice, Inbred BALB C Mice, Inbred C57BL Mice, Transgenic Microbiota Microbiota (Symbiotic organisms) Mortality Neonates Neutrophils Nutrition Pathogenesis Pathogens Phenotype Physical Sciences Physiological aspects Polymerase Chain Reaction Pregnancy Pregnancy, Animal Prevention Receptors, Interleukin-8B - genetics Receptors, Interleukin-8B - metabolism Research and Analysis Methods Risk factors RNA, Ribosomal, 16S - genetics Rotavirus rRNA 16S Signal Transduction Sulfamethoxazole Sulfamethoxazole - administration & dosage Survivability Trimethoprim Trimethoprim - administration & dosage Viruses |
title | Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cxcr2%20signaling%20and%20the%20microbiome%20suppress%20inflammation,%20bile%20duct%20injury,%20and%20the%20phenotype%20of%20experimental%20biliary%20atresia&rft.jtitle=PloS%20one&rft.au=Jee,%20Junbae&rft.date=2017-08-01&rft.volume=12&rft.issue=8&rft.spage=e0182089&rft.epage=e0182089&rft.pages=e0182089-e0182089&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0182089&rft_dat=%3Cgale_plos_%3EA499700389%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-61ec75484b51592922cf446793f369a07c41b1ee0329766c00e4eccdaed9c4ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925191679&rft_id=info:pmid/28763485&rft_galeid=A499700389&rfr_iscdi=true |