Loading…

Apolipoprotein A-I exchange is impaired in metabolic syndrome patients asymptomatic for diabetes and cardiovascular disease

We tested the hypothesis that HDL-apolipoprotein A-I exchange (HAE), a measure of high-density lipoprotein (HDL) function and a key step in reverse cholesterol transport (RCT), is impaired in metabolic syndrome (MetSyn) patients who are asymptomatic for diabetes and cardiovascular disease. We also c...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-08, Vol.12 (8), p.e0182217-e0182217
Main Authors: Borja, Mark S, Hammerson, Bradley, Tang, Chongren, Savinova, Olga V, Shearer, Gregory C, Oda, Michael N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We tested the hypothesis that HDL-apolipoprotein A-I exchange (HAE), a measure of high-density lipoprotein (HDL) function and a key step in reverse cholesterol transport (RCT), is impaired in metabolic syndrome (MetSyn) patients who are asymptomatic for diabetes and cardiovascular disease. We also compared HAE with cell-based cholesterol efflux capacity (CEC) to address previous reports that CEC is enhanced in MetSyn populations. HAE and ABCA1-specific CEC were measured as tests of HDL function in 60 MetSyn patients and 14 normolipidemic control subjects. Predictors of HAE and CEC were evaluated with multiple linear regression modeling using clinical markers of MetSyn and CVD risk. HAE was significantly reduced in MetSyn patients (49.0 ± 10.9% vs. 61.2 ± 6.1%, P < 0.0001), as was ABCA1-specific CEC (10.1 ± 1.6% vs. 12.3 ± 2.0%, P < 0.002). Multiple linear regression analysis identified apoA-I concentration as a significant positive predictor of HAE, and MetSyn patients had significantly lower HAE per mg/dL of apoA-I (P = 0.004). MetSyn status was a negative predictor of CEC, but triglyceride (TG) was a positive predictor of CEC, with MetSyn patients having higher CEC per mg/dL of TG, but lower overall CEC compared to controls. MetSyn patients have impaired HAE that contributes to reduced capacity for ABCA1-mediated CEC. MetSyn status is inversely correlated with CEC but positively correlated with TG, which explains the contradictory results from earlier MetSyn studies focused on CEC. HAE and CEC are inhibited in MetSyn patients over a broad range of absolute apoA-I and HDL particle levels, supporting the observation that this patient population bears significant residual cardiovascular disease risk.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0182217