Loading…
Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient...
Saved in:
Published in: | PLoS genetics 2017-07, Vol.13 (7), p.e1006849-e1006849 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53 |
---|---|
cites | cdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53 |
container_end_page | e1006849 |
container_issue | 7 |
container_start_page | e1006849 |
container_title | PLoS genetics |
container_volume | 13 |
creator | Kim, Eunhee Sakata, Kazuko Liao, Francesca-Fang |
description | The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems. |
doi_str_mv | 10.1371/journal.pgen.1006849 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1929383673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499694377</galeid><doaj_id>oai_doaj_org_article_33041597a9444fdd9e4625e793409cc2</doaj_id><sourcerecordid>A499694377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</originalsourceid><addsrcrecordid>eNqVk11rFDEUhgdRbK3-A9EBQfRi12TyfSPUYu1CsdJab2M2ycxmmZ2MyUxx_72Z7rTsSC-UEBJOnvc9-TpZ9hKCOUQMflj7PjSqnreVbeYQAMqxeJQdQkLQjGGAH-_ND7JnMa4BQIQL9jQ7KDhlnHF6mP385IwLVnfOJ7PcNZ0Nba22uS_zs6tTmBtbBWXUsJ6rxuTX3y5zlfCbXagNfuM7G_NO9flq2yb1ysfUw7a-JZ5nT0pVR_tiHI-y69PP30_OZucXXxYnx-czzUTRzQpYMKbosiClUAJYzinhBdWYWEF4aTWCgGAuBCnQUhmNoQEUcS2MsEwZgo6y1zvftvZRjpcTJRSFQBxRhhKx2BHGq7Vsg9uosJVeOXkb8KGSKnRO11YiBDAkgimBMS5NyoFpQSwTCAOhdZG8Po7Z-uXGGm2bLqh6YjpdadxKVv5GEgIZYIPBu9Eg-F-9jZ3cuKhtXavG-n7YN6QMFoDQhL75C334dCNVqXQA15Q-5dWDqTzGQlCBEWOJmj9ApWbsxmnf2NKl-ETwfiJITGd_d5XqY5SLq8v_YL_-O3vxY8q-3WNXVtXdKvq6H75XnIJ4B-rgYwy2vH8QCORQNHc3J4eikWPRJNmr_ce8F91VCfoD1n4QiA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929383673</pqid></control><display><type>article</type><title>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Eunhee ; Sakata, Kazuko ; Liao, Francesca-Fang</creator><contributor>Gan, Li</contributor><creatorcontrib>Kim, Eunhee ; Sakata, Kazuko ; Liao, Francesca-Fang ; Gan, Li</creatorcontrib><description>The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006849</identifier><identifier>PMID: 28678786</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Animal models ; Animals ; Apoptosis ; Autophagy - genetics ; Bidirectional ; Biochemistry ; Biology and Life Sciences ; Brain ; CCAAT/enhancer-binding protein ; Cognitive ability ; Dementia ; Departments ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress - genetics ; Gene Expression Regulation ; Genetic aspects ; Health aspects ; Heat shock factors ; Heat Shock Transcription Factors ; Heat stress ; Heat-Shock Proteins - genetics ; Heat-Shock Response - genetics ; Hippocampus - metabolism ; Hippocampus - pathology ; Homeostasis ; Homology ; HSF1 protein ; Hsp70 protein ; Humans ; Huntingtons disease ; Inducers ; Kinases ; Knock ; Medicine and Health Sciences ; Mice ; Mice, Knockout ; Neural circuitry ; Neurobiology ; Neurodegeneration ; Neurodegenerative diseases ; Neurons - metabolism ; Neurons - pathology ; Neurosciences ; Pathogenesis ; Pathology ; Phagocytosis ; Pharmacology ; Phosphorylation ; Protein Aggregation, Pathological - genetics ; Protein folding ; Proteins ; Proteolysis ; Rats ; Research and Analysis Methods ; Stress response ; Tau protein ; Tau proteins ; tau Proteins - genetics ; tau Proteins - metabolism ; Tauopathies - genetics ; Tauopathies - metabolism ; Tauopathies - pathology ; Toxicity ; Transcription Factor CHOP - biosynthesis ; Transcription Factor CHOP - genetics ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Unfolded Protein Response - genetics</subject><ispartof>PLoS genetics, 2017-07, Vol.13 (7), p.e1006849-e1006849</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kim E, Sakata K, Liao F-F (2017) Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS Genet 13(7): e1006849. https://doi.org/10.1371/journal.pgen.1006849</rights><rights>2017 Kim et al 2017 Kim et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kim E, Sakata K, Liao F-F (2017) Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS Genet 13(7): e1006849. https://doi.org/10.1371/journal.pgen.1006849</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</citedby><cites>FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1929383673/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1929383673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28678786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gan, Li</contributor><creatorcontrib>Kim, Eunhee</creatorcontrib><creatorcontrib>Sakata, Kazuko</creatorcontrib><creatorcontrib>Liao, Francesca-Fang</creatorcontrib><title>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.</description><subject>Activation</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy - genetics</subject><subject>Bidirectional</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>CCAAT/enhancer-binding protein</subject><subject>Cognitive ability</subject><subject>Dementia</subject><subject>Departments</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - genetics</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Heat shock factors</subject><subject>Heat Shock Transcription Factors</subject><subject>Heat stress</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Response - genetics</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>HSF1 protein</subject><subject>Hsp70 protein</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Inducers</subject><subject>Kinases</subject><subject>Knock</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neural circuitry</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Phagocytosis</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Protein Aggregation, Pathological - genetics</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Rats</subject><subject>Research and Analysis Methods</subject><subject>Stress response</subject><subject>Tau protein</subject><subject>Tau proteins</subject><subject>tau Proteins - genetics</subject><subject>tau Proteins - metabolism</subject><subject>Tauopathies - genetics</subject><subject>Tauopathies - metabolism</subject><subject>Tauopathies - pathology</subject><subject>Toxicity</subject><subject>Transcription Factor CHOP - biosynthesis</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Unfolded Protein Response - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11rFDEUhgdRbK3-A9EBQfRi12TyfSPUYu1CsdJab2M2ycxmmZ2MyUxx_72Z7rTsSC-UEBJOnvc9-TpZ9hKCOUQMflj7PjSqnreVbeYQAMqxeJQdQkLQjGGAH-_ND7JnMa4BQIQL9jQ7KDhlnHF6mP385IwLVnfOJ7PcNZ0Nba22uS_zs6tTmBtbBWXUsJ6rxuTX3y5zlfCbXagNfuM7G_NO9flq2yb1ysfUw7a-JZ5nT0pVR_tiHI-y69PP30_OZucXXxYnx-czzUTRzQpYMKbosiClUAJYzinhBdWYWEF4aTWCgGAuBCnQUhmNoQEUcS2MsEwZgo6y1zvftvZRjpcTJRSFQBxRhhKx2BHGq7Vsg9uosJVeOXkb8KGSKnRO11YiBDAkgimBMS5NyoFpQSwTCAOhdZG8Po7Z-uXGGm2bLqh6YjpdadxKVv5GEgIZYIPBu9Eg-F-9jZ3cuKhtXavG-n7YN6QMFoDQhL75C334dCNVqXQA15Q-5dWDqTzGQlCBEWOJmj9ApWbsxmnf2NKl-ETwfiJITGd_d5XqY5SLq8v_YL_-O3vxY8q-3WNXVtXdKvq6H75XnIJ4B-rgYwy2vH8QCORQNHc3J4eikWPRJNmr_ce8F91VCfoD1n4QiA</recordid><startdate>20170705</startdate><enddate>20170705</enddate><creator>Kim, Eunhee</creator><creator>Sakata, Kazuko</creator><creator>Liao, Francesca-Fang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170705</creationdate><title>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</title><author>Kim, Eunhee ; Sakata, Kazuko ; Liao, Francesca-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy - genetics</topic><topic>Bidirectional</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>CCAAT/enhancer-binding protein</topic><topic>Cognitive ability</topic><topic>Dementia</topic><topic>Departments</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - genetics</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Heat shock factors</topic><topic>Heat Shock Transcription Factors</topic><topic>Heat stress</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Response - genetics</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>HSF1 protein</topic><topic>Hsp70 protein</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Inducers</topic><topic>Kinases</topic><topic>Knock</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neural circuitry</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Phagocytosis</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Protein Aggregation, Pathological - genetics</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Rats</topic><topic>Research and Analysis Methods</topic><topic>Stress response</topic><topic>Tau protein</topic><topic>Tau proteins</topic><topic>tau Proteins - genetics</topic><topic>tau Proteins - metabolism</topic><topic>Tauopathies - genetics</topic><topic>Tauopathies - metabolism</topic><topic>Tauopathies - pathology</topic><topic>Toxicity</topic><topic>Transcription Factor CHOP - biosynthesis</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Unfolded Protein Response - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Eunhee</creatorcontrib><creatorcontrib>Sakata, Kazuko</creatorcontrib><creatorcontrib>Liao, Francesca-Fang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Eunhee</au><au>Sakata, Kazuko</au><au>Liao, Francesca-Fang</au><au>Gan, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-07-05</date><risdate>2017</risdate><volume>13</volume><issue>7</issue><spage>e1006849</spage><epage>e1006849</epage><pages>e1006849-e1006849</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28678786</pmid><doi>10.1371/journal.pgen.1006849</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2017-07, Vol.13 (7), p.e1006849-e1006849 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1929383673 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Activation Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Animal models Animals Apoptosis Autophagy - genetics Bidirectional Biochemistry Biology and Life Sciences Brain CCAAT/enhancer-binding protein Cognitive ability Dementia Departments DNA-Binding Proteins - biosynthesis DNA-Binding Proteins - genetics Endoplasmic reticulum Endoplasmic Reticulum Stress - genetics Gene Expression Regulation Genetic aspects Health aspects Heat shock factors Heat Shock Transcription Factors Heat stress Heat-Shock Proteins - genetics Heat-Shock Response - genetics Hippocampus - metabolism Hippocampus - pathology Homeostasis Homology HSF1 protein Hsp70 protein Humans Huntingtons disease Inducers Kinases Knock Medicine and Health Sciences Mice Mice, Knockout Neural circuitry Neurobiology Neurodegeneration Neurodegenerative diseases Neurons - metabolism Neurons - pathology Neurosciences Pathogenesis Pathology Phagocytosis Pharmacology Phosphorylation Protein Aggregation, Pathological - genetics Protein folding Proteins Proteolysis Rats Research and Analysis Methods Stress response Tau protein Tau proteins tau Proteins - genetics tau Proteins - metabolism Tauopathies - genetics Tauopathies - metabolism Tauopathies - pathology Toxicity Transcription Factor CHOP - biosynthesis Transcription Factor CHOP - genetics Transcription Factors - biosynthesis Transcription Factors - genetics Unfolded Protein Response - genetics |
title | Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20interplay%20of%20HSF1%20degradation%20and%20UPR%20activation%20promotes%20tau%20hyperphosphorylation&rft.jtitle=PLoS%20genetics&rft.au=Kim,%20Eunhee&rft.date=2017-07-05&rft.volume=13&rft.issue=7&rft.spage=e1006849&rft.epage=e1006849&rft.pages=e1006849-e1006849&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006849&rft_dat=%3Cgale_plos_%3EA499694377%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929383673&rft_id=info:pmid/28678786&rft_galeid=A499694377&rfr_iscdi=true |