Loading…

Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation

The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2017-07, Vol.13 (7), p.e1006849-e1006849
Main Authors: Kim, Eunhee, Sakata, Kazuko, Liao, Francesca-Fang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53
cites cdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53
container_end_page e1006849
container_issue 7
container_start_page e1006849
container_title PLoS genetics
container_volume 13
creator Kim, Eunhee
Sakata, Kazuko
Liao, Francesca-Fang
description The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.
doi_str_mv 10.1371/journal.pgen.1006849
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1929383673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499694377</galeid><doaj_id>oai_doaj_org_article_33041597a9444fdd9e4625e793409cc2</doaj_id><sourcerecordid>A499694377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</originalsourceid><addsrcrecordid>eNqVk11rFDEUhgdRbK3-A9EBQfRi12TyfSPUYu1CsdJab2M2ycxmmZ2MyUxx_72Z7rTsSC-UEBJOnvc9-TpZ9hKCOUQMflj7PjSqnreVbeYQAMqxeJQdQkLQjGGAH-_ND7JnMa4BQIQL9jQ7KDhlnHF6mP385IwLVnfOJ7PcNZ0Nba22uS_zs6tTmBtbBWXUsJ6rxuTX3y5zlfCbXagNfuM7G_NO9flq2yb1ysfUw7a-JZ5nT0pVR_tiHI-y69PP30_OZucXXxYnx-czzUTRzQpYMKbosiClUAJYzinhBdWYWEF4aTWCgGAuBCnQUhmNoQEUcS2MsEwZgo6y1zvftvZRjpcTJRSFQBxRhhKx2BHGq7Vsg9uosJVeOXkb8KGSKnRO11YiBDAkgimBMS5NyoFpQSwTCAOhdZG8Po7Z-uXGGm2bLqh6YjpdadxKVv5GEgIZYIPBu9Eg-F-9jZ3cuKhtXavG-n7YN6QMFoDQhL75C334dCNVqXQA15Q-5dWDqTzGQlCBEWOJmj9ApWbsxmnf2NKl-ETwfiJITGd_d5XqY5SLq8v_YL_-O3vxY8q-3WNXVtXdKvq6H75XnIJ4B-rgYwy2vH8QCORQNHc3J4eikWPRJNmr_ce8F91VCfoD1n4QiA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929383673</pqid></control><display><type>article</type><title>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Kim, Eunhee ; Sakata, Kazuko ; Liao, Francesca-Fang</creator><contributor>Gan, Li</contributor><creatorcontrib>Kim, Eunhee ; Sakata, Kazuko ; Liao, Francesca-Fang ; Gan, Li</creatorcontrib><description>The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006849</identifier><identifier>PMID: 28678786</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Alzheimer Disease - genetics ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Animal models ; Animals ; Apoptosis ; Autophagy - genetics ; Bidirectional ; Biochemistry ; Biology and Life Sciences ; Brain ; CCAAT/enhancer-binding protein ; Cognitive ability ; Dementia ; Departments ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress - genetics ; Gene Expression Regulation ; Genetic aspects ; Health aspects ; Heat shock factors ; Heat Shock Transcription Factors ; Heat stress ; Heat-Shock Proteins - genetics ; Heat-Shock Response - genetics ; Hippocampus - metabolism ; Hippocampus - pathology ; Homeostasis ; Homology ; HSF1 protein ; Hsp70 protein ; Humans ; Huntingtons disease ; Inducers ; Kinases ; Knock ; Medicine and Health Sciences ; Mice ; Mice, Knockout ; Neural circuitry ; Neurobiology ; Neurodegeneration ; Neurodegenerative diseases ; Neurons - metabolism ; Neurons - pathology ; Neurosciences ; Pathogenesis ; Pathology ; Phagocytosis ; Pharmacology ; Phosphorylation ; Protein Aggregation, Pathological - genetics ; Protein folding ; Proteins ; Proteolysis ; Rats ; Research and Analysis Methods ; Stress response ; Tau protein ; Tau proteins ; tau Proteins - genetics ; tau Proteins - metabolism ; Tauopathies - genetics ; Tauopathies - metabolism ; Tauopathies - pathology ; Toxicity ; Transcription Factor CHOP - biosynthesis ; Transcription Factor CHOP - genetics ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Unfolded Protein Response - genetics</subject><ispartof>PLoS genetics, 2017-07, Vol.13 (7), p.e1006849-e1006849</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kim E, Sakata K, Liao F-F (2017) Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS Genet 13(7): e1006849. https://doi.org/10.1371/journal.pgen.1006849</rights><rights>2017 Kim et al 2017 Kim et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kim E, Sakata K, Liao F-F (2017) Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS Genet 13(7): e1006849. https://doi.org/10.1371/journal.pgen.1006849</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</citedby><cites>FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1929383673/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1929383673?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28678786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gan, Li</contributor><creatorcontrib>Kim, Eunhee</creatorcontrib><creatorcontrib>Sakata, Kazuko</creatorcontrib><creatorcontrib>Liao, Francesca-Fang</creatorcontrib><title>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.</description><subject>Activation</subject><subject>Alzheimer Disease - genetics</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy - genetics</subject><subject>Bidirectional</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>CCAAT/enhancer-binding protein</subject><subject>Cognitive ability</subject><subject>Dementia</subject><subject>Departments</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress - genetics</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Heat shock factors</subject><subject>Heat Shock Transcription Factors</subject><subject>Heat stress</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Response - genetics</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>HSF1 protein</subject><subject>Hsp70 protein</subject><subject>Humans</subject><subject>Huntingtons disease</subject><subject>Inducers</subject><subject>Kinases</subject><subject>Knock</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neural circuitry</subject><subject>Neurobiology</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurosciences</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Phagocytosis</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Protein Aggregation, Pathological - genetics</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Rats</subject><subject>Research and Analysis Methods</subject><subject>Stress response</subject><subject>Tau protein</subject><subject>Tau proteins</subject><subject>tau Proteins - genetics</subject><subject>tau Proteins - metabolism</subject><subject>Tauopathies - genetics</subject><subject>Tauopathies - metabolism</subject><subject>Tauopathies - pathology</subject><subject>Toxicity</subject><subject>Transcription Factor CHOP - biosynthesis</subject><subject>Transcription Factor CHOP - genetics</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Unfolded Protein Response - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11rFDEUhgdRbK3-A9EBQfRi12TyfSPUYu1CsdJab2M2ycxmmZ2MyUxx_72Z7rTsSC-UEBJOnvc9-TpZ9hKCOUQMflj7PjSqnreVbeYQAMqxeJQdQkLQjGGAH-_ND7JnMa4BQIQL9jQ7KDhlnHF6mP385IwLVnfOJ7PcNZ0Nba22uS_zs6tTmBtbBWXUsJ6rxuTX3y5zlfCbXagNfuM7G_NO9flq2yb1ysfUw7a-JZ5nT0pVR_tiHI-y69PP30_OZucXXxYnx-czzUTRzQpYMKbosiClUAJYzinhBdWYWEF4aTWCgGAuBCnQUhmNoQEUcS2MsEwZgo6y1zvftvZRjpcTJRSFQBxRhhKx2BHGq7Vsg9uosJVeOXkb8KGSKnRO11YiBDAkgimBMS5NyoFpQSwTCAOhdZG8Po7Z-uXGGm2bLqh6YjpdadxKVv5GEgIZYIPBu9Eg-F-9jZ3cuKhtXavG-n7YN6QMFoDQhL75C334dCNVqXQA15Q-5dWDqTzGQlCBEWOJmj9ApWbsxmnf2NKl-ETwfiJITGd_d5XqY5SLq8v_YL_-O3vxY8q-3WNXVtXdKvq6H75XnIJ4B-rgYwy2vH8QCORQNHc3J4eikWPRJNmr_ce8F91VCfoD1n4QiA</recordid><startdate>20170705</startdate><enddate>20170705</enddate><creator>Kim, Eunhee</creator><creator>Sakata, Kazuko</creator><creator>Liao, Francesca-Fang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170705</creationdate><title>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</title><author>Kim, Eunhee ; Sakata, Kazuko ; Liao, Francesca-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Alzheimer Disease - genetics</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy - genetics</topic><topic>Bidirectional</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>CCAAT/enhancer-binding protein</topic><topic>Cognitive ability</topic><topic>Dementia</topic><topic>Departments</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress - genetics</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Heat shock factors</topic><topic>Heat Shock Transcription Factors</topic><topic>Heat stress</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Response - genetics</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>HSF1 protein</topic><topic>Hsp70 protein</topic><topic>Humans</topic><topic>Huntingtons disease</topic><topic>Inducers</topic><topic>Kinases</topic><topic>Knock</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neural circuitry</topic><topic>Neurobiology</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurosciences</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Phagocytosis</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Protein Aggregation, Pathological - genetics</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Rats</topic><topic>Research and Analysis Methods</topic><topic>Stress response</topic><topic>Tau protein</topic><topic>Tau proteins</topic><topic>tau Proteins - genetics</topic><topic>tau Proteins - metabolism</topic><topic>Tauopathies - genetics</topic><topic>Tauopathies - metabolism</topic><topic>Tauopathies - pathology</topic><topic>Toxicity</topic><topic>Transcription Factor CHOP - biosynthesis</topic><topic>Transcription Factor CHOP - genetics</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Unfolded Protein Response - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Eunhee</creatorcontrib><creatorcontrib>Sakata, Kazuko</creatorcontrib><creatorcontrib>Liao, Francesca-Fang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Eunhee</au><au>Sakata, Kazuko</au><au>Liao, Francesca-Fang</au><au>Gan, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-07-05</date><risdate>2017</risdate><volume>13</volume><issue>7</issue><spage>e1006849</spage><epage>e1006849</epage><pages>e1006849-e1006849</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD)-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28678786</pmid><doi>10.1371/journal.pgen.1006849</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2017-07, Vol.13 (7), p.e1006849-e1006849
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1929383673
source ProQuest - Publicly Available Content Database; PubMed Central
subjects Activation
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Animal models
Animals
Apoptosis
Autophagy - genetics
Bidirectional
Biochemistry
Biology and Life Sciences
Brain
CCAAT/enhancer-binding protein
Cognitive ability
Dementia
Departments
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - genetics
Endoplasmic reticulum
Endoplasmic Reticulum Stress - genetics
Gene Expression Regulation
Genetic aspects
Health aspects
Heat shock factors
Heat Shock Transcription Factors
Heat stress
Heat-Shock Proteins - genetics
Heat-Shock Response - genetics
Hippocampus - metabolism
Hippocampus - pathology
Homeostasis
Homology
HSF1 protein
Hsp70 protein
Humans
Huntingtons disease
Inducers
Kinases
Knock
Medicine and Health Sciences
Mice
Mice, Knockout
Neural circuitry
Neurobiology
Neurodegeneration
Neurodegenerative diseases
Neurons - metabolism
Neurons - pathology
Neurosciences
Pathogenesis
Pathology
Phagocytosis
Pharmacology
Phosphorylation
Protein Aggregation, Pathological - genetics
Protein folding
Proteins
Proteolysis
Rats
Research and Analysis Methods
Stress response
Tau protein
Tau proteins
tau Proteins - genetics
tau Proteins - metabolism
Tauopathies - genetics
Tauopathies - metabolism
Tauopathies - pathology
Toxicity
Transcription Factor CHOP - biosynthesis
Transcription Factor CHOP - genetics
Transcription Factors - biosynthesis
Transcription Factors - genetics
Unfolded Protein Response - genetics
title Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20interplay%20of%20HSF1%20degradation%20and%20UPR%20activation%20promotes%20tau%20hyperphosphorylation&rft.jtitle=PLoS%20genetics&rft.au=Kim,%20Eunhee&rft.date=2017-07-05&rft.volume=13&rft.issue=7&rft.spage=e1006849&rft.epage=e1006849&rft.pages=e1006849-e1006849&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006849&rft_dat=%3Cgale_plos_%3EA499694377%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c792t-21277a6b25f9a90e8865826c45e958fec31054899523badc41d0638c9d9e7ad53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929383673&rft_id=info:pmid/28678786&rft_galeid=A499694377&rfr_iscdi=true