Loading…

Universal features of dendrites through centripetal branch ordering

Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally de...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2017-07, Vol.13 (7), p.e1005615-e1005615
Main Authors: Vormberg, Alexandra, Effenberger, Felix, Muellerleile, Julia, Cuntz, Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-4f484d40e14110eac912587f49931eea62703972ba6859772f1cede8228f755f3
cites cdi_FETCH-LOGICAL-c633t-4f484d40e14110eac912587f49931eea62703972ba6859772f1cede8228f755f3
container_end_page e1005615
container_issue 7
container_start_page e1005615
container_title PLoS computational biology
container_volume 13
creator Vormberg, Alexandra
Effenberger, Felix
Muellerleile, Julia
Cuntz, Hermann
description Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks-the Horton-Strahler order (SO)-to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites.
doi_str_mv 10.1371/journal.pcbi.1005615
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1929400958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499694455</galeid><doaj_id>oai_doaj_org_article_eb085cdbb5ae4bec8c9a5ecd3a50458c</doaj_id><sourcerecordid>A499694455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-4f484d40e14110eac912587f49931eea62703972ba6859772f1cede8228f755f3</originalsourceid><addsrcrecordid>eNqVkl2PEyEUhonRuGv1Hxht4o1etMIAA9xssmn8aLLRRN1rwsBhSjMdKsxs9N9Lt7ObrfHGcMHXc97DezgIvSR4Sagg77dxTL3plnvbhCXBmNeEP0LnhHO6EJTLxw_WZ-hZzluMy1LVT9FZJWtBFBPnaHXdhxtI2XRzD2YYE-R59HMHvUthKJthk-LYbuYW-iGFPQyFbJLp7WYek4MU-vY5euJNl-HFNM_Q9ccPP1afF1dfP61Xl1cLW1M6LJhnkjmGgTBCMBirSMWl8EwpSgBMXQlMlagaU0uuhKg8seBAVpX0gnNPZ-j1UXffxawn_1kTVSmGseKyEOsj4aLZ6n0KO5N-62iCvj2IqdUmDcF2oKHBklvXNNwAa8BKqwwH66jhmHFpi9bFlG1sduBu_ZvuRPT0pg8b3cYbzTnhjOMi8HYSSPHnCHnQu5AtdJ3pIY6Hd5Niv1Z1XdA3f6H_drc8Uq0pBkLvY8lry3CwCzb24EM5vyz1rBVj5e9n6N1JQGEG-DW0ZsxZr79_-w_2yynLjqxNMecE_r4qBOtDc949Xx-aU0_NWcJePazofdBdN9I_Q-DhEg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929400958</pqid></control><display><type>article</type><title>Universal features of dendrites through centripetal branch ordering</title><source>PubMed Central(OpenAccess)</source><source>ProQuest - Publicly Available Content Database</source><creator>Vormberg, Alexandra ; Effenberger, Felix ; Muellerleile, Julia ; Cuntz, Hermann</creator><contributor>Gutkin, Boris S.</contributor><creatorcontrib>Vormberg, Alexandra ; Effenberger, Felix ; Muellerleile, Julia ; Cuntz, Hermann ; Gutkin, Boris S.</creatorcontrib><description>Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks-the Horton-Strahler order (SO)-to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005615</identifier><identifier>PMID: 28671947</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Brain ; Computer Simulation ; Cooperation ; Dendrites ; Dendrites - ultrastructure ; Dendritic branching ; Dendritic structure ; Humans ; Insects ; Mathematical morphology ; Models, Anatomic ; Models, Neurological ; Models, Statistical ; Morphogenesis ; Morphology ; Neuronal Plasticity ; Neurons ; Neurosciences ; Physiological aspects ; River networks ; Rivers ; Society ; Software ; Studies</subject><ispartof>PLoS computational biology, 2017-07, Vol.13 (7), p.e1005615-e1005615</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Vormberg A, Effenberger F, Muellerleile J, Cuntz H (2017) Universal features of dendrites through centripetal branch ordering. PLoS Comput Biol 13(7): e1005615. https://doi.org/10.1371/journal.pcbi.1005615</rights><rights>2017 Vormberg et al 2017 Vormberg et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Vormberg A, Effenberger F, Muellerleile J, Cuntz H (2017) Universal features of dendrites through centripetal branch ordering. PLoS Comput Biol 13(7): e1005615. https://doi.org/10.1371/journal.pcbi.1005615</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-4f484d40e14110eac912587f49931eea62703972ba6859772f1cede8228f755f3</citedby><cites>FETCH-LOGICAL-c633t-4f484d40e14110eac912587f49931eea62703972ba6859772f1cede8228f755f3</cites><orcidid>0000-0001-5445-0507 ; 0000-0001-7663-1026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1929400958/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1929400958?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28671947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gutkin, Boris S.</contributor><creatorcontrib>Vormberg, Alexandra</creatorcontrib><creatorcontrib>Effenberger, Felix</creatorcontrib><creatorcontrib>Muellerleile, Julia</creatorcontrib><creatorcontrib>Cuntz, Hermann</creatorcontrib><title>Universal features of dendrites through centripetal branch ordering</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks-the Horton-Strahler order (SO)-to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Computer Simulation</subject><subject>Cooperation</subject><subject>Dendrites</subject><subject>Dendrites - ultrastructure</subject><subject>Dendritic branching</subject><subject>Dendritic structure</subject><subject>Humans</subject><subject>Insects</subject><subject>Mathematical morphology</subject><subject>Models, Anatomic</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Morphogenesis</subject><subject>Morphology</subject><subject>Neuronal Plasticity</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>River networks</subject><subject>Rivers</subject><subject>Society</subject><subject>Software</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2PEyEUhonRuGv1Hxht4o1etMIAA9xssmn8aLLRRN1rwsBhSjMdKsxs9N9Lt7ObrfHGcMHXc97DezgIvSR4Sagg77dxTL3plnvbhCXBmNeEP0LnhHO6EJTLxw_WZ-hZzluMy1LVT9FZJWtBFBPnaHXdhxtI2XRzD2YYE-R59HMHvUthKJthk-LYbuYW-iGFPQyFbJLp7WYek4MU-vY5euJNl-HFNM_Q9ccPP1afF1dfP61Xl1cLW1M6LJhnkjmGgTBCMBirSMWl8EwpSgBMXQlMlagaU0uuhKg8seBAVpX0gnNPZ-j1UXffxawn_1kTVSmGseKyEOsj4aLZ6n0KO5N-62iCvj2IqdUmDcF2oKHBklvXNNwAa8BKqwwH66jhmHFpi9bFlG1sduBu_ZvuRPT0pg8b3cYbzTnhjOMi8HYSSPHnCHnQu5AtdJ3pIY6Hd5Niv1Z1XdA3f6H_drc8Uq0pBkLvY8lry3CwCzb24EM5vyz1rBVj5e9n6N1JQGEG-DW0ZsxZr79_-w_2yynLjqxNMecE_r4qBOtDc949Xx-aU0_NWcJePazofdBdN9I_Q-DhEg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Vormberg, Alexandra</creator><creator>Effenberger, Felix</creator><creator>Muellerleile, Julia</creator><creator>Cuntz, Hermann</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5445-0507</orcidid><orcidid>https://orcid.org/0000-0001-7663-1026</orcidid></search><sort><creationdate>20170701</creationdate><title>Universal features of dendrites through centripetal branch ordering</title><author>Vormberg, Alexandra ; Effenberger, Felix ; Muellerleile, Julia ; Cuntz, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-4f484d40e14110eac912587f49931eea62703972ba6859772f1cede8228f755f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Computer Simulation</topic><topic>Cooperation</topic><topic>Dendrites</topic><topic>Dendrites - ultrastructure</topic><topic>Dendritic branching</topic><topic>Dendritic structure</topic><topic>Humans</topic><topic>Insects</topic><topic>Mathematical morphology</topic><topic>Models, Anatomic</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Morphogenesis</topic><topic>Morphology</topic><topic>Neuronal Plasticity</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>River networks</topic><topic>Rivers</topic><topic>Society</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vormberg, Alexandra</creatorcontrib><creatorcontrib>Effenberger, Felix</creatorcontrib><creatorcontrib>Muellerleile, Julia</creatorcontrib><creatorcontrib>Cuntz, Hermann</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vormberg, Alexandra</au><au>Effenberger, Felix</au><au>Muellerleile, Julia</au><au>Cuntz, Hermann</au><au>Gutkin, Boris S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal features of dendrites through centripetal branch ordering</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>13</volume><issue>7</issue><spage>e1005615</spage><epage>e1005615</epage><pages>e1005615-e1005615</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks-the Horton-Strahler order (SO)-to examine hierarchical relationships of branching statistics in reconstructed and model dendritic trees. We report on a number of universal topological relationships with SO that are true for all binary trees and distinguish those from SO-sorted metric measures that appear to be cell type-specific. The latter are therefore potential new candidates for categorising dendritic tree structures. Interestingly, we find a faithful correlation of branch diameters with centripetal branch orders, indicating a possible functional importance of SO for dendritic morphology and growth. Also, simulated local voltage responses to synaptic inputs are strongly correlated with SO. In summary, our study identifies important SO-dependent measures in dendritic morphology that are relevant for neural function while at the same time it describes other relationships that are universal for all dendrites.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28671947</pmid><doi>10.1371/journal.pcbi.1005615</doi><orcidid>https://orcid.org/0000-0001-5445-0507</orcidid><orcidid>https://orcid.org/0000-0001-7663-1026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2017-07, Vol.13 (7), p.e1005615-e1005615
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1929400958
source PubMed Central(OpenAccess); ProQuest - Publicly Available Content Database
subjects Animals
Biology and Life Sciences
Brain
Computer Simulation
Cooperation
Dendrites
Dendrites - ultrastructure
Dendritic branching
Dendritic structure
Humans
Insects
Mathematical morphology
Models, Anatomic
Models, Neurological
Models, Statistical
Morphogenesis
Morphology
Neuronal Plasticity
Neurons
Neurosciences
Physiological aspects
River networks
Rivers
Society
Software
Studies
title Universal features of dendrites through centripetal branch ordering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20features%20of%20dendrites%20through%20centripetal%20branch%20ordering&rft.jtitle=PLoS%20computational%20biology&rft.au=Vormberg,%20Alexandra&rft.date=2017-07-01&rft.volume=13&rft.issue=7&rft.spage=e1005615&rft.epage=e1005615&rft.pages=e1005615-e1005615&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005615&rft_dat=%3Cgale_plos_%3EA499694455%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-4f484d40e14110eac912587f49931eea62703972ba6859772f1cede8228f755f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929400958&rft_id=info:pmid/28671947&rft_galeid=A499694455&rfr_iscdi=true