Loading…

Detailing neuroanatomical development in late childhood and early adolescence using NODDI

Diffusion tensor imaging (DTI) studies have provided much evidence of white and subcortical gray matter changes during late childhood and early adolescence that suggest increasing myelination, axon density, and/or fiber coherence. Neurite orientation dispersion and density imaging (NODDI) can be use...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-08, Vol.12 (8), p.e0182340-e0182340
Main Authors: Mah, Alyssa, Geeraert, Bryce, Lebel, Catherine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diffusion tensor imaging (DTI) studies have provided much evidence of white and subcortical gray matter changes during late childhood and early adolescence that suggest increasing myelination, axon density, and/or fiber coherence. Neurite orientation dispersion and density imaging (NODDI) can be used to further characterize development in white and subcortical grey matter regions in the brain by improving specificity of the MRI signal compared to conventional DTI. We used measures from NODDI and DTI to examine white and subcortical gray matter development in a group of 27 healthy participants aged 8-13 years. Neurite density index (NDI) was strongly correlated with age in nearly all regions, and was more strongly associated with age than fractional anisotropy (FA). No significant correlations were observed between orientation dispersion index (ODI) and age. This suggests that white matter and subcortical gray matter changes during late childhood and adolescence are dominated by changes in neurite density (i.e., axon density and myelination), rather than increasing coherence of axons. Within brain regions, FA was correlated with both ODI and NDI while mean diffusivity was only related to neurite density, providing further information about the structural variation across individuals. Data-driven clustering of the NODDI parameters showed that microstructural profiles varied along layers of white matter, but that that much of the white and subcortical gray matter matured in a similar manner. Clustering highlighted isolated brain regions with decreasing NDI values that were not apparent in region-of-interest analysis. Overall, these results help to more specifically understand patterns of white and gray matter development during late childhood and early adolescence.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0182340