Loading…
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type...
Saved in:
Published in: | PloS one 2017-08, Vol.12 (8), p.e0176905 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c593t-f574e0342b87534584b208a6192782c8900e025baab94175c7ad5e7e00dbd8f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c593t-f574e0342b87534584b208a6192782c8900e025baab94175c7ad5e7e00dbd8f23 |
container_end_page | |
container_issue | 8 |
container_start_page | e0176905 |
container_title | PloS one |
container_volume | 12 |
creator | Mills, Taylor S Eliseeva, Tatiana Bersie, Stephanie M Randazzo, Grace Nahreini, Jhenya Park, Ko Uoon Brzezinski, 4th, Joseph A |
description | The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates. |
doi_str_mv | 10.1371/journal.pone.0176905 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1931247381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501434506</galeid><doaj_id>oai_doaj_org_article_2d62ab9324ca4622a34e3484f4a7d17d</doaj_id><sourcerecordid>A501434506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-f574e0342b87534584b208a6192782c8900e025baab94175c7ad5e7e00dbd8f23</originalsourceid><addsrcrecordid>eNp1Ul1rFDEUDWKxdfUfiA74og-75nOSeSnURe1CQR_0OdxJMrtZZpI1mRH896bdaemCJQ8JN-ece-7lIPSG4BVhknzaxykF6FeHGNwKE1k3WDxDF6RhdFlTzJ4_ep-jlznvMRZM1fULdE6Voo2U-AJt1nFofYAxJg99ldx26mH0MVSxq6D63PvhQKoPP5IdyMfKhR0E41LlQzXuXDXEKbtCGovCK3TWQZ_d6_leoF9fv_xcXy9vvn_brK9ulkY0bFx2QnKHGaetkoJxoXhLsYKaNFQqalSDscNUtABtw4kURoIVTjqMbWtVR9kCvTvqHvqY9byFrMushHLJFCmIzRFhI-z1IfkB0l8dweu7QkxbDWn0pnea2pqWRoxyA7ymFBh3jCvecZCWSFu0LuduUzs4a1wYE_Qnoqc_we_0Nv7RQtRKFj8L9H4WSPH35PL4hOUZtYXiyocuFjEz-Gz0lcCEl0XhuqBW_0GVY93gTclB50v9hMCPBJNizsl1D8YJ1rcpujejb1Ok5xQV2tvHQz-Q7mPD_gEFDMIq</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931247381</pqid></control><display><type>article</type><title>Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Mills, Taylor S ; Eliseeva, Tatiana ; Bersie, Stephanie M ; Randazzo, Grace ; Nahreini, Jhenya ; Park, Ko Uoon ; Brzezinski, 4th, Joseph A</creator><contributor>Reh, Thomas A</contributor><creatorcontrib>Mills, Taylor S ; Eliseeva, Tatiana ; Bersie, Stephanie M ; Randazzo, Grace ; Nahreini, Jhenya ; Park, Ko Uoon ; Brzezinski, 4th, Joseph A ; Reh, Thomas A</creatorcontrib><description>The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176905</identifier><identifier>PMID: 28829770</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Binding sites ; Biology and Life Sciences ; Bipolar cells ; Cell cycle ; Cloning ; Combinatorial analysis ; Deoxyribonuclease ; Enhancer Elements, Genetic ; Gene expression ; Genetic regulation ; Genomes ; Health aspects ; Hypersensitivity ; Interneurons ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; Neurogenesis ; Otx2 protein ; Photoreception ; Photoreceptors ; Plasmids ; Positive Regulatory Domain I-Binding Factor 1 ; Research and Analysis Methods ; Retina ; Retina - metabolism ; Retinoic acid ; Sequences ; Social Sciences ; Stochasticity ; Temporal variations ; Transcription (Genetics) ; Transcription factors ; Transcription Factors - genetics ; Transgenic mice ; Zinc finger proteins</subject><ispartof>PloS one, 2017-08, Vol.12 (8), p.e0176905</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Mills et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Mills et al 2017 Mills et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-f574e0342b87534584b208a6192782c8900e025baab94175c7ad5e7e00dbd8f23</citedby><cites>FETCH-LOGICAL-c593t-f574e0342b87534584b208a6192782c8900e025baab94175c7ad5e7e00dbd8f23</cites><orcidid>0000-0001-5854-0315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1931247381/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1931247381?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28829770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reh, Thomas A</contributor><creatorcontrib>Mills, Taylor S</creatorcontrib><creatorcontrib>Eliseeva, Tatiana</creatorcontrib><creatorcontrib>Bersie, Stephanie M</creatorcontrib><creatorcontrib>Randazzo, Grace</creatorcontrib><creatorcontrib>Nahreini, Jhenya</creatorcontrib><creatorcontrib>Park, Ko Uoon</creatorcontrib><creatorcontrib>Brzezinski, 4th, Joseph A</creatorcontrib><title>Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.</description><subject>Animals</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Bipolar cells</subject><subject>Cell cycle</subject><subject>Cloning</subject><subject>Combinatorial analysis</subject><subject>Deoxyribonuclease</subject><subject>Enhancer Elements, Genetic</subject><subject>Gene expression</subject><subject>Genetic regulation</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Hypersensitivity</subject><subject>Interneurons</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutagenesis</subject><subject>Neurogenesis</subject><subject>Otx2 protein</subject><subject>Photoreception</subject><subject>Photoreceptors</subject><subject>Plasmids</subject><subject>Positive Regulatory Domain I-Binding Factor 1</subject><subject>Research and Analysis Methods</subject><subject>Retina</subject><subject>Retina - metabolism</subject><subject>Retinoic acid</subject><subject>Sequences</subject><subject>Social Sciences</subject><subject>Stochasticity</subject><subject>Temporal variations</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transgenic mice</subject><subject>Zinc finger proteins</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ul1rFDEUDWKxdfUfiA74og-75nOSeSnURe1CQR_0OdxJMrtZZpI1mRH896bdaemCJQ8JN-ece-7lIPSG4BVhknzaxykF6FeHGNwKE1k3WDxDF6RhdFlTzJ4_ep-jlznvMRZM1fULdE6Voo2U-AJt1nFofYAxJg99ldx26mH0MVSxq6D63PvhQKoPP5IdyMfKhR0E41LlQzXuXDXEKbtCGovCK3TWQZ_d6_leoF9fv_xcXy9vvn_brK9ulkY0bFx2QnKHGaetkoJxoXhLsYKaNFQqalSDscNUtABtw4kURoIVTjqMbWtVR9kCvTvqHvqY9byFrMushHLJFCmIzRFhI-z1IfkB0l8dweu7QkxbDWn0pnea2pqWRoxyA7ymFBh3jCvecZCWSFu0LuduUzs4a1wYE_Qnoqc_we_0Nv7RQtRKFj8L9H4WSPH35PL4hOUZtYXiyocuFjEz-Gz0lcCEl0XhuqBW_0GVY93gTclB50v9hMCPBJNizsl1D8YJ1rcpujejb1Ok5xQV2tvHQz-Q7mPD_gEFDMIq</recordid><startdate>20170822</startdate><enddate>20170822</enddate><creator>Mills, Taylor S</creator><creator>Eliseeva, Tatiana</creator><creator>Bersie, Stephanie M</creator><creator>Randazzo, Grace</creator><creator>Nahreini, Jhenya</creator><creator>Park, Ko Uoon</creator><creator>Brzezinski, 4th, Joseph A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5854-0315</orcidid></search><sort><creationdate>20170822</creationdate><title>Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina</title><author>Mills, Taylor S ; Eliseeva, Tatiana ; Bersie, Stephanie M ; Randazzo, Grace ; Nahreini, Jhenya ; Park, Ko Uoon ; Brzezinski, 4th, Joseph A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-f574e0342b87534584b208a6192782c8900e025baab94175c7ad5e7e00dbd8f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Bipolar cells</topic><topic>Cell cycle</topic><topic>Cloning</topic><topic>Combinatorial analysis</topic><topic>Deoxyribonuclease</topic><topic>Enhancer Elements, Genetic</topic><topic>Gene expression</topic><topic>Genetic regulation</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Hypersensitivity</topic><topic>Interneurons</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutagenesis</topic><topic>Neurogenesis</topic><topic>Otx2 protein</topic><topic>Photoreception</topic><topic>Photoreceptors</topic><topic>Plasmids</topic><topic>Positive Regulatory Domain I-Binding Factor 1</topic><topic>Research and Analysis Methods</topic><topic>Retina</topic><topic>Retina - metabolism</topic><topic>Retinoic acid</topic><topic>Sequences</topic><topic>Social Sciences</topic><topic>Stochasticity</topic><topic>Temporal variations</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transgenic mice</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mills, Taylor S</creatorcontrib><creatorcontrib>Eliseeva, Tatiana</creatorcontrib><creatorcontrib>Bersie, Stephanie M</creatorcontrib><creatorcontrib>Randazzo, Grace</creatorcontrib><creatorcontrib>Nahreini, Jhenya</creatorcontrib><creatorcontrib>Park, Ko Uoon</creatorcontrib><creatorcontrib>Brzezinski, 4th, Joseph A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mills, Taylor S</au><au>Eliseeva, Tatiana</au><au>Bersie, Stephanie M</au><au>Randazzo, Grace</au><au>Nahreini, Jhenya</au><au>Park, Ko Uoon</au><au>Brzezinski, 4th, Joseph A</au><au>Reh, Thomas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-08-22</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>e0176905</spage><pages>e0176905-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28829770</pmid><doi>10.1371/journal.pone.0176905</doi><orcidid>https://orcid.org/0000-0001-5854-0315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-08, Vol.12 (8), p.e0176905 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1931247381 |
source | Publicly Available Content Database; PubMed Central |
subjects | Animals Binding sites Biology and Life Sciences Bipolar cells Cell cycle Cloning Combinatorial analysis Deoxyribonuclease Enhancer Elements, Genetic Gene expression Genetic regulation Genomes Health aspects Hypersensitivity Interneurons Medicine and Health Sciences Mice Mice, Inbred C57BL Mutagenesis Neurogenesis Otx2 protein Photoreception Photoreceptors Plasmids Positive Regulatory Domain I-Binding Factor 1 Research and Analysis Methods Retina Retina - metabolism Retinoic acid Sequences Social Sciences Stochasticity Temporal variations Transcription (Genetics) Transcription factors Transcription Factors - genetics Transgenic mice Zinc finger proteins |
title | Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20regulation%20of%20a%20Blimp1%20(Prdm1)%20enhancer%20in%20the%20mouse%20retina&rft.jtitle=PloS%20one&rft.au=Mills,%20Taylor%20S&rft.date=2017-08-22&rft.volume=12&rft.issue=8&rft.spage=e0176905&rft.pages=e0176905-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176905&rft_dat=%3Cgale_plos_%3EA501434506%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c593t-f574e0342b87534584b208a6192782c8900e025baab94175c7ad5e7e00dbd8f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931247381&rft_id=info:pmid/28829770&rft_galeid=A501434506&rfr_iscdi=true |