Loading…

A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats

Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-c...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-09, Vol.12 (9), p.e0185209-e0185209
Main Authors: Schmoll, Martin, Unger, Ewald, Bijak, Manfred, Stoiber, Martin, Lanmüller, Hermann, Jarvis, Jonathan Charles
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-a96e8bf7b552d9b3790a7327eb41ee987aaa68d1f28195fb403bdc38d3d12b693
cites cdi_FETCH-LOGICAL-c692t-a96e8bf7b552d9b3790a7327eb41ee987aaa68d1f28195fb403bdc38d3d12b693
container_end_page e0185209
container_issue 9
container_start_page e0185209
container_title PloS one
container_volume 12
creator Schmoll, Martin
Unger, Ewald
Bijak, Manfred
Stoiber, Martin
Lanmüller, Hermann
Jarvis, Jonathan Charles
description Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.
doi_str_mv 10.1371/journal.pone.0185209
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1941327186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A505755422</galeid><doaj_id>oai_doaj_org_article_795149f8c1c54dc68b4d3c2fde9416c2</doaj_id><sourcerecordid>A505755422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a96e8bf7b552d9b3790a7327eb41ee987aaa68d1f28195fb403bdc38d3d12b693</originalsourceid><addsrcrecordid>eNqNk99rHCEQx5fS0qRp_4PSCoXSPtx11V1XXwpH6I9AINBfr-Lq7J2Hq4m6of3v6-U2IVfyUHxQnM98Z5xxquolrpeYdvjDNkzRK7e8DB6WNeYtqcWj6hgLShaM1PTxvfNR9SylbV23lDP2tDoiXNCGku64GlfIh2twaLTeqjxFQNYvnPWAXFBmocE5lAMaQaXZmGyeUAafrAM0hKghlWuUN4Cy7a1yNiHlM0Qb4o4zwaMwoKhyel49GZRL8GLeT6qfnz_9OP26OL_4cna6Ol9oJkheKMGA90PXty0xoqedqFVX0oW-wQCCd0opxg0eCMeiHfqmpr3RlBtqMOmZoCfV673upQtJzpVKEosGFxnMWSHO9oQJaisvox1V_CODsvLmIsS1VDFb7UB2osWNGLjGum2MZrxvDNVkMFDkmCZF6-McbepHMBp8jsodiB5avN3IdbiWLat5I2gReDcLxHA1QcpytGlXeeUhTDd5E8YbxrqCvvkHffh1M7VW5QHWD6HE1TtRuWrrtmvbhuzyXj5AlWVgtLp8q6F0-NDh_YFDYTL8zms1pSTPvn_7f_bi1yH79h67AeXyJgU3ZRt8OgSbPahjSCnCcFdkXMvdVNxWQ-6mQs5TUdxe3W_QndPtGNC_3okHsg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941327186</pqid></control><display><type>article</type><title>A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Schmoll, Martin ; Unger, Ewald ; Bijak, Manfred ; Stoiber, Martin ; Lanmüller, Hermann ; Jarvis, Jonathan Charles</creator><contributor>Nordez, Antoine</contributor><creatorcontrib>Schmoll, Martin ; Unger, Ewald ; Bijak, Manfred ; Stoiber, Martin ; Lanmüller, Hermann ; Jarvis, Jonathan Charles ; Nordez, Antoine</creatorcontrib><description>Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0185209</identifier><identifier>PMID: 28934327</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Biomechanical Phenomena ; Biomechanics ; Biomedical engineering ; Biosensors ; Computer and Information Sciences ; Controlled conditions ; Deformation ; Deformation mechanisms ; Engineering ; Engineering and Technology ; Health physics ; Laboratory animals ; Linearity ; Load cells ; Male ; Materials Testing - instrumentation ; Medicine and Health Sciences ; Methods ; Miniaturization - instrumentation ; Muscles ; Musculoskeletal system ; Optics ; Physical Sciences ; Physiological aspects ; Rats ; Rats, Wistar ; Research and Analysis Methods ; Rodents ; Tendons ; Tendons - physiology ; Tensile Strength ; Terminology ; Tibia ; Weight-Bearing</subject><ispartof>PloS one, 2017-09, Vol.12 (9), p.e0185209-e0185209</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Schmoll et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Schmoll et al 2017 Schmoll et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a96e8bf7b552d9b3790a7327eb41ee987aaa68d1f28195fb403bdc38d3d12b693</citedby><cites>FETCH-LOGICAL-c692t-a96e8bf7b552d9b3790a7327eb41ee987aaa68d1f28195fb403bdc38d3d12b693</cites><orcidid>0000-0001-6354-3879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1941327186/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1941327186?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28934327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nordez, Antoine</contributor><creatorcontrib>Schmoll, Martin</creatorcontrib><creatorcontrib>Unger, Ewald</creatorcontrib><creatorcontrib>Bijak, Manfred</creatorcontrib><creatorcontrib>Stoiber, Martin</creatorcontrib><creatorcontrib>Lanmüller, Hermann</creatorcontrib><creatorcontrib>Jarvis, Jonathan Charles</creatorcontrib><title>A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Biomedical engineering</subject><subject>Biosensors</subject><subject>Computer and Information Sciences</subject><subject>Controlled conditions</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Health physics</subject><subject>Laboratory animals</subject><subject>Linearity</subject><subject>Load cells</subject><subject>Male</subject><subject>Materials Testing - instrumentation</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Miniaturization - instrumentation</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Tendons</subject><subject>Tendons - physiology</subject><subject>Tensile Strength</subject><subject>Terminology</subject><subject>Tibia</subject><subject>Weight-Bearing</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99rHCEQx5fS0qRp_4PSCoXSPtx11V1XXwpH6I9AINBfr-Lq7J2Hq4m6of3v6-U2IVfyUHxQnM98Z5xxquolrpeYdvjDNkzRK7e8DB6WNeYtqcWj6hgLShaM1PTxvfNR9SylbV23lDP2tDoiXNCGku64GlfIh2twaLTeqjxFQNYvnPWAXFBmocE5lAMaQaXZmGyeUAafrAM0hKghlWuUN4Cy7a1yNiHlM0Qb4o4zwaMwoKhyel49GZRL8GLeT6qfnz_9OP26OL_4cna6Ol9oJkheKMGA90PXty0xoqedqFVX0oW-wQCCd0opxg0eCMeiHfqmpr3RlBtqMOmZoCfV673upQtJzpVKEosGFxnMWSHO9oQJaisvox1V_CODsvLmIsS1VDFb7UB2osWNGLjGum2MZrxvDNVkMFDkmCZF6-McbepHMBp8jsodiB5avN3IdbiWLat5I2gReDcLxHA1QcpytGlXeeUhTDd5E8YbxrqCvvkHffh1M7VW5QHWD6HE1TtRuWrrtmvbhuzyXj5AlWVgtLp8q6F0-NDh_YFDYTL8zms1pSTPvn_7f_bi1yH79h67AeXyJgU3ZRt8OgSbPahjSCnCcFdkXMvdVNxWQ-6mQs5TUdxe3W_QndPtGNC_3okHsg</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>Schmoll, Martin</creator><creator>Unger, Ewald</creator><creator>Bijak, Manfred</creator><creator>Stoiber, Martin</creator><creator>Lanmüller, Hermann</creator><creator>Jarvis, Jonathan Charles</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6354-3879</orcidid></search><sort><creationdate>20170921</creationdate><title>A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats</title><author>Schmoll, Martin ; Unger, Ewald ; Bijak, Manfred ; Stoiber, Martin ; Lanmüller, Hermann ; Jarvis, Jonathan Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a96e8bf7b552d9b3790a7327eb41ee987aaa68d1f28195fb403bdc38d3d12b693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Biomedical engineering</topic><topic>Biosensors</topic><topic>Computer and Information Sciences</topic><topic>Controlled conditions</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Health physics</topic><topic>Laboratory animals</topic><topic>Linearity</topic><topic>Load cells</topic><topic>Male</topic><topic>Materials Testing - instrumentation</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Miniaturization - instrumentation</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Tendons</topic><topic>Tendons - physiology</topic><topic>Tensile Strength</topic><topic>Terminology</topic><topic>Tibia</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmoll, Martin</creatorcontrib><creatorcontrib>Unger, Ewald</creatorcontrib><creatorcontrib>Bijak, Manfred</creatorcontrib><creatorcontrib>Stoiber, Martin</creatorcontrib><creatorcontrib>Lanmüller, Hermann</creatorcontrib><creatorcontrib>Jarvis, Jonathan Charles</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmoll, Martin</au><au>Unger, Ewald</au><au>Bijak, Manfred</au><au>Stoiber, Martin</au><au>Lanmüller, Hermann</au><au>Jarvis, Jonathan Charles</au><au>Nordez, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-09-21</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>e0185209</spage><epage>e0185209</epage><pages>e0185209-e0185209</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28934327</pmid><doi>10.1371/journal.pone.0185209</doi><tpages>e0185209</tpages><orcidid>https://orcid.org/0000-0001-6354-3879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-09, Vol.12 (9), p.e0185209-e0185209
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1941327186
source Publicly Available Content Database; PubMed Central(OpenAccess)
subjects Animals
Biology and Life Sciences
Biomechanical Phenomena
Biomechanics
Biomedical engineering
Biosensors
Computer and Information Sciences
Controlled conditions
Deformation
Deformation mechanisms
Engineering
Engineering and Technology
Health physics
Laboratory animals
Linearity
Load cells
Male
Materials Testing - instrumentation
Medicine and Health Sciences
Methods
Miniaturization - instrumentation
Muscles
Musculoskeletal system
Optics
Physical Sciences
Physiological aspects
Rats
Rats, Wistar
Research and Analysis Methods
Rodents
Tendons
Tendons - physiology
Tensile Strength
Terminology
Tibia
Weight-Bearing
title A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20miniature%20in-line%20load-cell%20to%20measure%20in-situ%20tensile%20forces%20in%20the%20tibialis%20anterior%20tendon%20of%20rats&rft.jtitle=PloS%20one&rft.au=Schmoll,%20Martin&rft.date=2017-09-21&rft.volume=12&rft.issue=9&rft.spage=e0185209&rft.epage=e0185209&rft.pages=e0185209-e0185209&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0185209&rft_dat=%3Cgale_plos_%3EA505755422%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-a96e8bf7b552d9b3790a7327eb41ee987aaa68d1f28195fb403bdc38d3d12b693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1941327186&rft_id=info:pmid/28934327&rft_galeid=A505755422&rfr_iscdi=true