Loading…
Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization
Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer che...
Saved in:
Published in: | PloS one 2017-09, Vol.12 (9), p.e0185112 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-bfe70267ab506379955270dc27babcfa610f46db4d931f5d7d9fdf09e3751063 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-bfe70267ab506379955270dc27babcfa610f46db4d931f5d7d9fdf09e3751063 |
container_end_page | |
container_issue | 9 |
container_start_page | e0185112 |
container_title | PloS one |
container_volume | 12 |
creator | Lee, Young-Sang Ku, Kang-Mo Becker, Talon M Juvik, John A |
description | Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market. |
doi_str_mv | 10.1371/journal.pone.0185112 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1942613397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A506437369</galeid><doaj_id>oai_doaj_org_article_0653fce11f714386b33958ff80cede0b</doaj_id><sourcerecordid>A506437369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bfe70267ab506379955270dc27babcfa610f46db4d931f5d7d9fdf09e3751063</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguBFx6Rp09YLYRn8GFhZ0MXbkOajkyVtapIOrn_FP-uZne4yBQXJRQ7Jc94T3pyTJM8xWmFS4bfXbvIDt6vRDWqFcF1inD9ITnFD8ozmiDw8ik-SJyFcI1SSmtLHyUleN0VZ5_g0-b3eqt6NXu3UEM1OpZ2dhAtmcJZHlXIhpn6C0LghNUO64964KaStd0I4a1I-yBQCy71MowlhUuFd-sUI77SdjDQia3lQcMd9p-I-8HwIwpsxut6IkGrn0_YmG72Tk4hQwDpvft0WfJo80twG9Wzez5Krjx-u1p-zi8tPm_X5RSZok8es1apCOa14WyJKqqYpy7xCUuRVy1uhOcVIF1S2hWwI1qWsZKOlRo0iVYkh4yx5eZAdrQtstjUw3BQ5xYQ0FRCbAyEdv2ajNz33N8xxw24PnO8Y99EIqxiiJdFCYawrXIDbLQiUtdY1Ekoq1ILW-7na1PZKCrDdc7sQXd4MZss6t2MlxTmIg8CrWcC7H2B3_MeTZ6rj8CozaAdiojdBsHOwqSAVoQ1Qq79QsKSCz4HG0gbOFwlvFgnARPUzdnwKgW2-ff1_9vL7kn19xG4Vt3EbnJ32bRCWYHEAocNC8ErfO4cR28_FnRtsPxdsngtIe3Hs-n3S3SCQP3jLDaI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942613397</pqid></control><display><type>article</type><title>Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Lee, Young-Sang ; Ku, Kang-Mo ; Becker, Talon M ; Juvik, John A</creator><contributor>Lim, Yong Pyo</contributor><creatorcontrib>Lee, Young-Sang ; Ku, Kang-Mo ; Becker, Talon M ; Juvik, John A ; Lim, Yong Pyo</creatorcontrib><description>Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0185112</identifier><identifier>PMID: 28945821</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anticarcinogenic Agents - analysis ; Anticarcinogenic Agents - metabolism ; Biocompatibility ; Biological activity ; Biology and Life Sciences ; Biomass ; Biosynthesis ; Brassica ; Brassica - chemistry ; Brassica - genetics ; Brassica - metabolism ; Brassica oleracea ; Broccoli ; Byproducts ; Cancer ; Chemistry ; Chromatography ; Crop science ; Cultivars ; Dietary Supplements - analysis ; Enzymes ; Flowering Tops - metabolism ; Food ; Gene expression ; Gene Expression Profiling ; Genes, Plant ; Genetic aspects ; Genetic engineering ; Glucose - analogs & derivatives ; Glucose - analysis ; Glucose - genetics ; Glucose - metabolism ; Glucosinolates - analysis ; Glucosinolates - genetics ; Glucosinolates - metabolism ; High performance liquid chromatography ; Homology ; Humans ; Hydrolysis ; Imidoesters - analysis ; Imidoesters - metabolism ; Liquid chromatography ; Metabolites ; Metabolome ; Metabolomics ; Methods ; Microfluidic Analytical Techniques ; Microfluidics ; NAD(P)H Dehydrogenase (Quinone) - biosynthesis ; Physical Sciences ; Physiological aspects ; Plant Leaves - metabolism ; Plant metabolites ; Plant Proteins - biosynthesis ; Plant Roots - metabolism ; Plant tissues ; Proteins ; Quinone ; Quinones ; Reductase ; RNA, Plant - genetics ; RNA, Plant - metabolism ; Soil sciences ; Tissue Distribution ; Vegetables</subject><ispartof>PloS one, 2017-09, Vol.12 (9), p.e0185112</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lee et al 2017 Lee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bfe70267ab506379955270dc27babcfa610f46db4d931f5d7d9fdf09e3751063</citedby><cites>FETCH-LOGICAL-c692t-bfe70267ab506379955270dc27babcfa610f46db4d931f5d7d9fdf09e3751063</cites><orcidid>0000-0002-8588-1163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1942613397/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1942613397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28945821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lim, Yong Pyo</contributor><creatorcontrib>Lee, Young-Sang</creatorcontrib><creatorcontrib>Ku, Kang-Mo</creatorcontrib><creatorcontrib>Becker, Talon M</creatorcontrib><creatorcontrib>Juvik, John A</creatorcontrib><title>Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.</description><subject>Anticarcinogenic Agents - analysis</subject><subject>Anticarcinogenic Agents - metabolism</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Brassica</subject><subject>Brassica - chemistry</subject><subject>Brassica - genetics</subject><subject>Brassica - metabolism</subject><subject>Brassica oleracea</subject><subject>Broccoli</subject><subject>Byproducts</subject><subject>Cancer</subject><subject>Chemistry</subject><subject>Chromatography</subject><subject>Crop science</subject><subject>Cultivars</subject><subject>Dietary Supplements - analysis</subject><subject>Enzymes</subject><subject>Flowering Tops - metabolism</subject><subject>Food</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Glucose - analogs & derivatives</subject><subject>Glucose - analysis</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Glucosinolates - analysis</subject><subject>Glucosinolates - genetics</subject><subject>Glucosinolates - metabolism</subject><subject>High performance liquid chromatography</subject><subject>Homology</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Imidoesters - analysis</subject><subject>Imidoesters - metabolism</subject><subject>Liquid chromatography</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Methods</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>NAD(P)H Dehydrogenase (Quinone) - biosynthesis</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Plant Leaves - metabolism</subject><subject>Plant metabolites</subject><subject>Plant Proteins - biosynthesis</subject><subject>Plant Roots - metabolism</subject><subject>Plant tissues</subject><subject>Proteins</subject><subject>Quinone</subject><subject>Quinones</subject><subject>Reductase</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>Soil sciences</subject><subject>Tissue Distribution</subject><subject>Vegetables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguBFx6Rp09YLYRn8GFhZ0MXbkOajkyVtapIOrn_FP-uZne4yBQXJRQ7Jc94T3pyTJM8xWmFS4bfXbvIDt6vRDWqFcF1inD9ITnFD8ozmiDw8ik-SJyFcI1SSmtLHyUleN0VZ5_g0-b3eqt6NXu3UEM1OpZ2dhAtmcJZHlXIhpn6C0LghNUO64964KaStd0I4a1I-yBQCy71MowlhUuFd-sUI77SdjDQia3lQcMd9p-I-8HwIwpsxut6IkGrn0_YmG72Tk4hQwDpvft0WfJo80twG9Wzez5Krjx-u1p-zi8tPm_X5RSZok8es1apCOa14WyJKqqYpy7xCUuRVy1uhOcVIF1S2hWwI1qWsZKOlRo0iVYkh4yx5eZAdrQtstjUw3BQ5xYQ0FRCbAyEdv2ajNz33N8xxw24PnO8Y99EIqxiiJdFCYawrXIDbLQiUtdY1Ekoq1ILW-7na1PZKCrDdc7sQXd4MZss6t2MlxTmIg8CrWcC7H2B3_MeTZ6rj8CozaAdiojdBsHOwqSAVoQ1Qq79QsKSCz4HG0gbOFwlvFgnARPUzdnwKgW2-ff1_9vL7kn19xG4Vt3EbnJ32bRCWYHEAocNC8ErfO4cR28_FnRtsPxdsngtIe3Hs-n3S3SCQP3jLDaI</recordid><startdate>20170925</startdate><enddate>20170925</enddate><creator>Lee, Young-Sang</creator><creator>Ku, Kang-Mo</creator><creator>Becker, Talon M</creator><creator>Juvik, John A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8588-1163</orcidid></search><sort><creationdate>20170925</creationdate><title>Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization</title><author>Lee, Young-Sang ; Ku, Kang-Mo ; Becker, Talon M ; Juvik, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bfe70267ab506379955270dc27babcfa610f46db4d931f5d7d9fdf09e3751063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anticarcinogenic Agents - analysis</topic><topic>Anticarcinogenic Agents - metabolism</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Brassica</topic><topic>Brassica - chemistry</topic><topic>Brassica - genetics</topic><topic>Brassica - metabolism</topic><topic>Brassica oleracea</topic><topic>Broccoli</topic><topic>Byproducts</topic><topic>Cancer</topic><topic>Chemistry</topic><topic>Chromatography</topic><topic>Crop science</topic><topic>Cultivars</topic><topic>Dietary Supplements - analysis</topic><topic>Enzymes</topic><topic>Flowering Tops - metabolism</topic><topic>Food</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Glucose - analogs & derivatives</topic><topic>Glucose - analysis</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Glucosinolates - analysis</topic><topic>Glucosinolates - genetics</topic><topic>Glucosinolates - metabolism</topic><topic>High performance liquid chromatography</topic><topic>Homology</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Imidoesters - analysis</topic><topic>Imidoesters - metabolism</topic><topic>Liquid chromatography</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Methods</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>NAD(P)H Dehydrogenase (Quinone) - biosynthesis</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Plant Leaves - metabolism</topic><topic>Plant metabolites</topic><topic>Plant Proteins - biosynthesis</topic><topic>Plant Roots - metabolism</topic><topic>Plant tissues</topic><topic>Proteins</topic><topic>Quinone</topic><topic>Quinones</topic><topic>Reductase</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>Soil sciences</topic><topic>Tissue Distribution</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Young-Sang</creatorcontrib><creatorcontrib>Ku, Kang-Mo</creatorcontrib><creatorcontrib>Becker, Talon M</creatorcontrib><creatorcontrib>Juvik, John A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Young-Sang</au><au>Ku, Kang-Mo</au><au>Becker, Talon M</au><au>Juvik, John A</au><au>Lim, Yong Pyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-09-25</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>e0185112</spage><pages>e0185112-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28945821</pmid><doi>10.1371/journal.pone.0185112</doi><tpages>e0185112</tpages><orcidid>https://orcid.org/0000-0002-8588-1163</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-09, Vol.12 (9), p.e0185112 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1942613397 |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Anticarcinogenic Agents - analysis Anticarcinogenic Agents - metabolism Biocompatibility Biological activity Biology and Life Sciences Biomass Biosynthesis Brassica Brassica - chemistry Brassica - genetics Brassica - metabolism Brassica oleracea Broccoli Byproducts Cancer Chemistry Chromatography Crop science Cultivars Dietary Supplements - analysis Enzymes Flowering Tops - metabolism Food Gene expression Gene Expression Profiling Genes, Plant Genetic aspects Genetic engineering Glucose - analogs & derivatives Glucose - analysis Glucose - genetics Glucose - metabolism Glucosinolates - analysis Glucosinolates - genetics Glucosinolates - metabolism High performance liquid chromatography Homology Humans Hydrolysis Imidoesters - analysis Imidoesters - metabolism Liquid chromatography Metabolites Metabolome Metabolomics Methods Microfluidic Analytical Techniques Microfluidics NAD(P)H Dehydrogenase (Quinone) - biosynthesis Physical Sciences Physiological aspects Plant Leaves - metabolism Plant metabolites Plant Proteins - biosynthesis Plant Roots - metabolism Plant tissues Proteins Quinone Quinones Reductase RNA, Plant - genetics RNA, Plant - metabolism Soil sciences Tissue Distribution Vegetables |
title | Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemopreventive%20glucosinolate%20accumulation%20in%20various%20broccoli%20and%20collard%20tissues:%20Microfluidic-based%20targeted%20transcriptomics%20for%20by-product%20valorization&rft.jtitle=PloS%20one&rft.au=Lee,%20Young-Sang&rft.date=2017-09-25&rft.volume=12&rft.issue=9&rft.spage=e0185112&rft.pages=e0185112-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0185112&rft_dat=%3Cgale_plos_%3EA506437369%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-bfe70267ab506379955270dc27babcfa610f46db4d931f5d7d9fdf09e3751063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1942613397&rft_id=info:pmid/28945821&rft_galeid=A506437369&rfr_iscdi=true |