Loading…

Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression

Huntington disease (HD) is a fatal neurodegenerative disorder, with no effective treatment. The pathogenic mechanisms underlying HD has not been elucidated, but weight loss, associated with chorea and cognitive decline, is a characteristic feature of the disease that is accessible to investigation....

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2007-07, Vol.2 (7), p.e647-e647
Main Authors: Mochel, Fanny, Charles, Perrine, Seguin, François, Barritault, Julie, Coussieu, Christiane, Perin, Laurence, Le Bouc, Yves, Gervais, Christiane, Carcelain, Guislaine, Vassault, Anne, Feingold, Josué, Rabier, Daniel, Durr, Alexandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Huntington disease (HD) is a fatal neurodegenerative disorder, with no effective treatment. The pathogenic mechanisms underlying HD has not been elucidated, but weight loss, associated with chorea and cognitive decline, is a characteristic feature of the disease that is accessible to investigation. We, therefore, performed a multiparametric study exploring body weight and the mechanisms of its loss in 32 presymptomatic carriers and HD patients in the early stages of the disease, compared to 21 controls. We combined this study with a multivariate statistical analysis of plasma components quantified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. We report evidence of an early hypermetabolic state in HD. Weight loss was observed in the HD group even in presymptomatic carriers, although their caloric intake was higher than that of controls. Inflammatory processes and primary hormonal dysfunction were excluded. (1)H NMR spectroscopy on plasma did, however, distinguish HD patients at different stages of the disease and presymptomatic carriers from controls. This distinction was attributable to low levels of the branched chain amino acids (BCAA), valine, leucine and isoleucine. BCAA levels were correlated with weight loss and, importantly, with disease progression and abnormal triplet repeat expansion size in the HD1 gene. Levels of IGF1, which is regulated by BCAA, were also significantly lower in the HD group. Therefore, early weight loss in HD is associated with a systemic metabolic defect, and BCAA levels may be used as a biomarker, indicative of disease onset and early progression. The decreased plasma levels of BCAA may correspond to a critical need for Krebs cycle energy substrates in the brain that increased metabolism in the periphery is trying to provide.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0000647