Loading…

Micronucleus-specific histone H1 is required for micronuclear chromosome integrity in Tetrahymena thermophila

Histone H1 molecules play a key role in establishing and maintaining higher order chromatin structures. They can bind to linker DNA entering and exiting the nucleosome and regulate transcriptional activity. Tetrahymena thermophila has two histone H1, namely, macronuclear histone H1 and micronuclear...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-11, Vol.12 (11), p.e0187475-e0187475
Main Authors: Qiao, Juxia, Xu, Jing, Bo, Tao, Wang, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Histone H1 molecules play a key role in establishing and maintaining higher order chromatin structures. They can bind to linker DNA entering and exiting the nucleosome and regulate transcriptional activity. Tetrahymena thermophila has two histone H1, namely, macronuclear histone H1 and micronuclear histone H1 (Mlh1). Mlh1 is specifically localized at micronuclei during growth and starvation stages. Moreover, Mlh1 is localized around micronuclei and forms a specific structure during the conjugation stage. It co-localizes partially with spindle apparatus during micronuclear meiosis. Analysis of MLH1 knock-out revealed that Mlh1 was required for the micronuclear integrity and development during conjugation stage. Overexpression of Mlh1 led to abnormal conjugation progression. RT-PCR analysis indicated that the expression level of HMGB3 increased in ΔMLH1 strains, while the expression level of MLH1 increased in ΔHMGB3 cells during conjugation. These results indicate that micronuclear integrity and sexual development require normal expression level of Mlh1 and that HmgB3 and Mlh1 may functionally compensate each other in regulating micronuclear structure in T. thermophila.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0187475