Loading…

The role of H19, a long non-coding RNA, in mouse liver postnatal maturation

H19 RNA is highly expressed at early postnatal ages and precipitously decreases at a specific time corresponding with increases in expression of genes important for mature liver function, such as drug metabolizing enzymes. H19's role in the regulation of liver maturation is currently unknown. U...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2017-11, Vol.12 (11), p.e0187557
Main Authors: Pope, Chad, Piekos, Stephanie C, Chen, Liming, Mishra, Shashank, Zhong, Xiao-Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:H19 RNA is highly expressed at early postnatal ages and precipitously decreases at a specific time corresponding with increases in expression of genes important for mature liver function, such as drug metabolizing enzymes. H19's role in the regulation of liver maturation is currently unknown. Using an H19 knockout mouse model to determine the role of H19 in liver development, we quantified gene expression for insulin growth factor signaling, Wnt signaling, key cytochrome P450 (P450) enzymes known to change as the liver develops, and fetal and adult plasma protein produced in liver. In mice lacking H19 expression, liver weights were significantly increased immediately after birth and significant increases were found in the number of actively proliferating cells. Increases in cell proliferation may be due to increases in β-catenin protein affecting Wnt signaling, increases in insulin-like growth factor 2 (IGF2) expression, and/or increases in insulin-like growth factor 1 receptor (IGF1R) expression at the protein level. Loss of targeted inhibition of IGF1R by microRNA 675 (miR-675) may be the cause of IGF1R increases, as miR-675 expression is also abrogated with loss of H19 expression in our model. P450 expression patterns were largely unchanged. No change in the production of plasma proteins was found, indicating H19 may not be important for liver maturation despite its role in controlling cell proliferation during liver growth. H19 may be important for normal liver development, and understanding how the liver matures will assist in predicting drug efficacy and toxicity in pediatric populations.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0187557