Loading…

Direct and allosteric inhibition of the FGF2/HSPGs/FGFR1 ternary complex formation by an antiangiogenic, thrombospondin-1-mimic small molecule

Fibroblast growth factors (FGFs) are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs), and heparan sulphate proteoglycans (HSPGs) is required for FGF...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2012-05, Vol.7 (5), p.e36990-e36990
Main Authors: Pagano, Katiuscia, Torella, Rubben, Foglieni, Chiara, Bugatti, Antonella, Tomaselli, Simona, Zetta, Lucia, Presta, Marco, Rusnati, Marco, Taraboletti, Giulia, Colombo, Giorgio, Ragona, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fibroblast growth factors (FGFs) are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs), and heparan sulphate proteoglycans (HSPGs) is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1. NMR and MD data demonstrate that sm27 engages the heparin-binding site of FGF2 and induces long-range dynamics perturbations along FGF2/FGFR1 interface regions. The functional consequence of the inhibitor binding is an impaired FGF2 interaction with both its receptors, as demonstrated by SPR and cell-based binding assays. We propose that sm27 antiangiogenic activity is based on a twofold-direct and allosteric-mechanism, inhibiting FGF2 binding to both its receptors.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0036990