Loading…

Knockdown of PPAR δ gene promotes the growth of colon cancer and reduces the sensitivity to bevacizumab in nude mice model

The role of peroxisome proliferator--activated receptor- δ (PPAR δ) gene in colon carcinogenesis remains highly controversial. Here, we established nude mice xenograft model using a human colon cancer cell line KM12C either with PPAR δ silenced or normal. The xenografts in PPAR δ-silenced group grew...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2013-04, Vol.8 (4), p.e60715
Main Authors: Yang, Lie, Zhou, Jin, Ma, Qin, Wang, Cun, Chen, Keling, Meng, Wenjian, Yu, Yongyang, Zhou, Zongguang, Sun, Xiaofeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of peroxisome proliferator--activated receptor- δ (PPAR δ) gene in colon carcinogenesis remains highly controversial. Here, we established nude mice xenograft model using a human colon cancer cell line KM12C either with PPAR δ silenced or normal. The xenografts in PPAR δ-silenced group grew significantly larger and heavier with less differentiation, promoted cell proliferation, increased expression of vascular endothelial growth factor (VEGF) and similar apoptosis index compared with those of PPAR δ-normal group. After treated with the specific VEGF inhibitor bevacizumab, the capacities of growth and proliferation of xenografts were decreased in both groups while still significantly higher in PPAR δ-silenced group than in PPAR δ-normal group. Administration of PPAR δ agonist significantly decreased VEGF expression in PPAR δ-normal KM12C cells but not in PPAR δ-silenced cells. These findings demonstrate that, knockdown of PPAR δ promotes the growth of colon cancer by inducing less differentiation, accelerating the proliferation and VEGF expression of tumor cells in vivo, and reduces tumor sensitivity to bevacizumab. This study indicates that PPAR δ attenuates colon carcinogenesis.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0060715