Loading…
Versatile single-step-assembly CRISPR/Cas9 vectors for dual gRNA expression
CRISPR/Cas9 technology enables efficient, rapid and cost-effective targeted genomic modification in a wide variety of cellular contexts including cultured cells. Some applications such as generation of double knock-outs, large deletions and paired-nickase cleavage require simultaneous expression of...
Saved in:
Published in: | PloS one 2017-12, Vol.12 (12), p.e0187236-e0187236 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CRISPR/Cas9 technology enables efficient, rapid and cost-effective targeted genomic modification in a wide variety of cellular contexts including cultured cells. Some applications such as generation of double knock-outs, large deletions and paired-nickase cleavage require simultaneous expression of two gRNAs. Although single plasmids that enable multiplex expression of gRNAs have been developed, these require multiple rounds of cloning and/or PCR for generation of the desired construct. Here, we describe a series of vectors that enable generation of customized dual-gRNA expression constructs via an easy one-step golden gate cloning reaction using two annealed oligonucleotide inserts with different overhangs. Through nucleofection of mouse embryonic stem cells, we demonstrate highly efficient cleavage of the target loci using the dual-guide plasmids, which are available as Cas9-nuclease or Cas9-nickase expression constructs, with or without selection markers. These vectors are a valuable addition to the CRISPR/Cas9 toolbox and will be made available to all interested researchers via the Addgene plasmid repository. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0187236 |