Loading…
Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model
A key challenge in the data analysis of biological high-throughput experiments is to handle the often low number of samples in the experiments compared to the number of biomolecules that are simultaneously measured. Combining experimental data using independent technologies to illuminate the same bi...
Saved in:
Published in: | PloS one 2013-07, Vol.8 (7), p.e68288-e68288 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-56143eefd6573230e3e9dab9627a37018bab5e5199be7570fa4552ee3d22d07c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-56143eefd6573230e3e9dab9627a37018bab5e5199be7570fa4552ee3d22d07c3 |
container_end_page | e68288 |
container_issue | 7 |
container_start_page | e68288 |
container_title | PloS one |
container_volume | 8 |
creator | Petersen, Kjell Rajcevic, Uros Abdul Rahim, Siti Aminah Jonassen, Inge Kalland, Karl-Henning Jimenez, Connie R Bjerkvig, Rolf Niclou, Simone P |
description | A key challenge in the data analysis of biological high-throughput experiments is to handle the often low number of samples in the experiments compared to the number of biomolecules that are simultaneously measured. Combining experimental data using independent technologies to illuminate the same biological trends, as well as complementing each other in a larger perspective, is one natural way to overcome this challenge. In this work we investigated if integrating proteomics and transcriptomics data from a brain cancer animal model using gene set based analysis methodology, could enhance the biological interpretation of the data relative to more traditional analysis of the two datasets individually. The brain cancer model used is based on serial passaging of transplanted human brain tumor material (glioblastoma--GBM) through several generations in rats. These serial transplantations lead over time to genotypic and phenotypic changes in the tumors and represent a medically relevant model with a rare access to samples and where consequent analyses of individual datasets have revealed relatively few significant findings on their own. We found that the integrated analysis both performed better in terms of significance measure of its findings compared to individual analyses, as well as providing independent verification of the individual results. Thus a better context for overall biological interpretation of the data can be achieved. |
doi_str_mv | 10.1371/journal.pone.0068288 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1974583450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478357987</galeid><doaj_id>oai_doaj_org_article_35e1c664b0eb4b1b99ff9db9e19c5c1a</doaj_id><sourcerecordid>A478357987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-56143eefd6573230e3e9dab9627a37018bab5e5199be7570fa4552ee3d22d07c3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnTJM2NsCy6Diws-HVpyMfpTIZOM5uki_PvzTjdZSp7Ib1IOH3e9_ScnlMULzGaY8Lxh7UfQq-6-db3MEeINVXTPCpOsSDVjFWIPD66nxTPYlwjREnD2NPipCINrylnp8WvS-ihjJBKrSLY0vUJlkGlfLUqqVLlFLvoYhngFlQXy-0Kep92W2dK69oWAvQGYtaVqtRB5dOoHAnlxlvonhdP2qyCF-N5Vvz4_On7xZfZ1fXl4uL8amaYqNKMMlwTgNYyyklFEBAQVmnBKq4IR7jRSlOgWAgNnHLUqprSCoDYqrKIG3JWvD74bjsf5diaKLHIZTakpigTiwNhvVrLbXAbFXbSKyf_BnxYShWSMx1IQgEbxmqNQNcaayHaVlgtAAtDDVbZ6-OYbdAbsAb6FFQ3MZ2-6d1KLv2tzLUwKkQ2eDcaBH8zQExy46KBrlM9-CF_d40xI5WgLKNv_kEfrm6klioX4PrW57xmbyrPa94QykXDMzV_gMqPhY0zeY5al-MTwfuJIDMJfqelGmKUi29f_5-9_jll3x6xqzxYaRV9NyTn-zgF6wNogo8xQHvfZIzkfg3uuiH3ayDHNciyV8c_6F50N_fkD1hJAv0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974583450</pqid></control><display><type>article</type><title>Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Petersen, Kjell ; Rajcevic, Uros ; Abdul Rahim, Siti Aminah ; Jonassen, Inge ; Kalland, Karl-Henning ; Jimenez, Connie R ; Bjerkvig, Rolf ; Niclou, Simone P</creator><contributor>Xu, Ying</contributor><creatorcontrib>Petersen, Kjell ; Rajcevic, Uros ; Abdul Rahim, Siti Aminah ; Jonassen, Inge ; Kalland, Karl-Henning ; Jimenez, Connie R ; Bjerkvig, Rolf ; Niclou, Simone P ; Xu, Ying</creatorcontrib><description>A key challenge in the data analysis of biological high-throughput experiments is to handle the often low number of samples in the experiments compared to the number of biomolecules that are simultaneously measured. Combining experimental data using independent technologies to illuminate the same biological trends, as well as complementing each other in a larger perspective, is one natural way to overcome this challenge. In this work we investigated if integrating proteomics and transcriptomics data from a brain cancer animal model using gene set based analysis methodology, could enhance the biological interpretation of the data relative to more traditional analysis of the two datasets individually. The brain cancer model used is based on serial passaging of transplanted human brain tumor material (glioblastoma--GBM) through several generations in rats. These serial transplantations lead over time to genotypic and phenotypic changes in the tumors and represent a medically relevant model with a rare access to samples and where consequent analyses of individual datasets have revealed relatively few significant findings on their own. We found that the integrated analysis both performed better in terms of significance measure of its findings compared to individual analyses, as well as providing independent verification of the individual results. Thus a better context for overall biological interpretation of the data can be achieved.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0068288</identifier><identifier>PMID: 23874576</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bioinformatics ; Biological effects ; Biology ; Biomolecules ; Brain ; Brain cancer ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain research ; Brain tumors ; Cancer ; Cancer genetics ; Comparative analysis ; Computational Biology - methods ; Data analysis ; Data processing ; Datasets ; Disease Models, Animal ; Experiments ; Gene expression ; Gene Expression Profiling ; Genes ; Genetic aspects ; Genomes ; Genomics ; Genotype & phenotype ; Glioblastoma ; Heterografts ; Humans ; Information management ; Laboratories ; Medical research ; Medicine ; Models, Biological ; Multivariate analysis ; Oncology ; Ontology ; Phenotype ; Proteins ; Proteome ; Proteomics ; Rats ; Reproducibility of Results ; Transcriptome ; Trends ; Tumors</subject><ispartof>PloS one, 2013-07, Vol.8 (7), p.e68288-e68288</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Petersen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Petersen et al 2013 Petersen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-56143eefd6573230e3e9dab9627a37018bab5e5199be7570fa4552ee3d22d07c3</citedby><cites>FETCH-LOGICAL-c692t-56143eefd6573230e3e9dab9627a37018bab5e5199be7570fa4552ee3d22d07c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1974583450/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1974583450?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23874576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Xu, Ying</contributor><creatorcontrib>Petersen, Kjell</creatorcontrib><creatorcontrib>Rajcevic, Uros</creatorcontrib><creatorcontrib>Abdul Rahim, Siti Aminah</creatorcontrib><creatorcontrib>Jonassen, Inge</creatorcontrib><creatorcontrib>Kalland, Karl-Henning</creatorcontrib><creatorcontrib>Jimenez, Connie R</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Niclou, Simone P</creatorcontrib><title>Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A key challenge in the data analysis of biological high-throughput experiments is to handle the often low number of samples in the experiments compared to the number of biomolecules that are simultaneously measured. Combining experimental data using independent technologies to illuminate the same biological trends, as well as complementing each other in a larger perspective, is one natural way to overcome this challenge. In this work we investigated if integrating proteomics and transcriptomics data from a brain cancer animal model using gene set based analysis methodology, could enhance the biological interpretation of the data relative to more traditional analysis of the two datasets individually. The brain cancer model used is based on serial passaging of transplanted human brain tumor material (glioblastoma--GBM) through several generations in rats. These serial transplantations lead over time to genotypic and phenotypic changes in the tumors and represent a medically relevant model with a rare access to samples and where consequent analyses of individual datasets have revealed relatively few significant findings on their own. We found that the integrated analysis both performed better in terms of significance measure of its findings compared to individual analyses, as well as providing independent verification of the individual results. Thus a better context for overall biological interpretation of the data can be achieved.</description><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Biology</subject><subject>Biomolecules</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain research</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Comparative analysis</subject><subject>Computational Biology - methods</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Disease Models, Animal</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Glioblastoma</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Information management</subject><subject>Laboratories</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Multivariate analysis</subject><subject>Oncology</subject><subject>Ontology</subject><subject>Phenotype</subject><subject>Proteins</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Reproducibility of Results</subject><subject>Transcriptome</subject><subject>Trends</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnTJM2NsCy6Diws-HVpyMfpTIZOM5uki_PvzTjdZSp7Ib1IOH3e9_ScnlMULzGaY8Lxh7UfQq-6-db3MEeINVXTPCpOsSDVjFWIPD66nxTPYlwjREnD2NPipCINrylnp8WvS-ihjJBKrSLY0vUJlkGlfLUqqVLlFLvoYhngFlQXy-0Kep92W2dK69oWAvQGYtaVqtRB5dOoHAnlxlvonhdP2qyCF-N5Vvz4_On7xZfZ1fXl4uL8amaYqNKMMlwTgNYyyklFEBAQVmnBKq4IR7jRSlOgWAgNnHLUqprSCoDYqrKIG3JWvD74bjsf5diaKLHIZTakpigTiwNhvVrLbXAbFXbSKyf_BnxYShWSMx1IQgEbxmqNQNcaayHaVlgtAAtDDVbZ6-OYbdAbsAb6FFQ3MZ2-6d1KLv2tzLUwKkQ2eDcaBH8zQExy46KBrlM9-CF_d40xI5WgLKNv_kEfrm6klioX4PrW57xmbyrPa94QykXDMzV_gMqPhY0zeY5al-MTwfuJIDMJfqelGmKUi29f_5-9_jll3x6xqzxYaRV9NyTn-zgF6wNogo8xQHvfZIzkfg3uuiH3ayDHNciyV8c_6F50N_fkD1hJAv0</recordid><startdate>20130709</startdate><enddate>20130709</enddate><creator>Petersen, Kjell</creator><creator>Rajcevic, Uros</creator><creator>Abdul Rahim, Siti Aminah</creator><creator>Jonassen, Inge</creator><creator>Kalland, Karl-Henning</creator><creator>Jimenez, Connie R</creator><creator>Bjerkvig, Rolf</creator><creator>Niclou, Simone P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130709</creationdate><title>Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model</title><author>Petersen, Kjell ; Rajcevic, Uros ; Abdul Rahim, Siti Aminah ; Jonassen, Inge ; Kalland, Karl-Henning ; Jimenez, Connie R ; Bjerkvig, Rolf ; Niclou, Simone P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-56143eefd6573230e3e9dab9627a37018bab5e5199be7570fa4552ee3d22d07c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Biology</topic><topic>Biomolecules</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain research</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Comparative analysis</topic><topic>Computational Biology - methods</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Disease Models, Animal</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Glioblastoma</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Information management</topic><topic>Laboratories</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Multivariate analysis</topic><topic>Oncology</topic><topic>Ontology</topic><topic>Phenotype</topic><topic>Proteins</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Reproducibility of Results</topic><topic>Transcriptome</topic><topic>Trends</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Kjell</creatorcontrib><creatorcontrib>Rajcevic, Uros</creatorcontrib><creatorcontrib>Abdul Rahim, Siti Aminah</creatorcontrib><creatorcontrib>Jonassen, Inge</creatorcontrib><creatorcontrib>Kalland, Karl-Henning</creatorcontrib><creatorcontrib>Jimenez, Connie R</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Niclou, Simone P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Kjell</au><au>Rajcevic, Uros</au><au>Abdul Rahim, Siti Aminah</au><au>Jonassen, Inge</au><au>Kalland, Karl-Henning</au><au>Jimenez, Connie R</au><au>Bjerkvig, Rolf</au><au>Niclou, Simone P</au><au>Xu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-07-09</date><risdate>2013</risdate><volume>8</volume><issue>7</issue><spage>e68288</spage><epage>e68288</epage><pages>e68288-e68288</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A key challenge in the data analysis of biological high-throughput experiments is to handle the often low number of samples in the experiments compared to the number of biomolecules that are simultaneously measured. Combining experimental data using independent technologies to illuminate the same biological trends, as well as complementing each other in a larger perspective, is one natural way to overcome this challenge. In this work we investigated if integrating proteomics and transcriptomics data from a brain cancer animal model using gene set based analysis methodology, could enhance the biological interpretation of the data relative to more traditional analysis of the two datasets individually. The brain cancer model used is based on serial passaging of transplanted human brain tumor material (glioblastoma--GBM) through several generations in rats. These serial transplantations lead over time to genotypic and phenotypic changes in the tumors and represent a medically relevant model with a rare access to samples and where consequent analyses of individual datasets have revealed relatively few significant findings on their own. We found that the integrated analysis both performed better in terms of significance measure of its findings compared to individual analyses, as well as providing independent verification of the individual results. Thus a better context for overall biological interpretation of the data can be achieved.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23874576</pmid><doi>10.1371/journal.pone.0068288</doi><tpages>e68288</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-07, Vol.8 (7), p.e68288-e68288 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1974583450 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Animals Bioinformatics Biological effects Biology Biomolecules Brain Brain cancer Brain Neoplasms - genetics Brain Neoplasms - metabolism Brain research Brain tumors Cancer Cancer genetics Comparative analysis Computational Biology - methods Data analysis Data processing Datasets Disease Models, Animal Experiments Gene expression Gene Expression Profiling Genes Genetic aspects Genomes Genomics Genotype & phenotype Glioblastoma Heterografts Humans Information management Laboratories Medical research Medicine Models, Biological Multivariate analysis Oncology Ontology Phenotype Proteins Proteome Proteomics Rats Reproducibility of Results Transcriptome Trends Tumors |
title | Gene set based integrated data analysis reveals phenotypic differences in a brain cancer model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20set%20based%20integrated%20data%20analysis%20reveals%20phenotypic%20differences%20in%20a%20brain%20cancer%20model&rft.jtitle=PloS%20one&rft.au=Petersen,%20Kjell&rft.date=2013-07-09&rft.volume=8&rft.issue=7&rft.spage=e68288&rft.epage=e68288&rft.pages=e68288-e68288&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0068288&rft_dat=%3Cgale_plos_%3EA478357987%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-56143eefd6573230e3e9dab9627a37018bab5e5199be7570fa4552ee3d22d07c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1974583450&rft_id=info:pmid/23874576&rft_galeid=A478357987&rfr_iscdi=true |