Loading…

Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions

For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is uncle...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-09, Vol.9 (9), p.e107640-e107640
Main Authors: Henkel, Sebastian G, Ter Beek, Alexander, Steinsiek, Sonja, Stagge, Stefan, Bettenbrock, Katja, de Mattos, M Joost Teixeira, Sauter, Thomas, Sawodny, Oliver, Ederer, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-8a66c5ab73b63f171a85d1a4091876d0e4cb3d785f6b14c50ff25a582f4dffef3
cites cdi_FETCH-LOGICAL-c526t-8a66c5ab73b63f171a85d1a4091876d0e4cb3d785f6b14c50ff25a582f4dffef3
container_end_page e107640
container_issue 9
container_start_page e107640
container_title PloS one
container_volume 9
creator Henkel, Sebastian G
Ter Beek, Alexander
Steinsiek, Sonja
Stagge, Stefan
Bettenbrock, Katja
de Mattos, M Joost Teixeira
Sauter, Thomas
Sawodny, Oliver
Ederer, Michael
description For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.
doi_str_mv 10.1371/journal.pone.0107640
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1979819806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef8407dfb30f4733b0841ff93157e077</doaj_id><sourcerecordid>1979819806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-8a66c5ab73b63f171a85d1a4091876d0e4cb3d785f6b14c50ff25a582f4dffef3</originalsourceid><addsrcrecordid>eNptUs1u1DAYjBCIlsIbILDEoVx2sePfXCrRqpRKlXqBs-U4duKV1w52UrFvj5dNq7bqyZY9M9_Mp6mqjwiuEebo2ybOKSi_HmMwa4ggZwS-qo5Rg-sVqyF-_eh-VL3LeQMhxYKxt9VRTWsmOK-Pq-FcZadBMv3s1RTTDozJBe1GbzKIFlxmPZjk9OAU0NG70wyMN3pKMYApqZDHmCagB-UCsDGBO5V2LvQg_t31JhRK6NzkYsjvqzdW-Ww-LOdJ9fvH5a-Ln6ub26vri-83K108TSuhGNNUtRy3DFvEkRK0Q4rABgnOOmiIbnHHBbWsRURTaG1NFRW1JZ21xuKT6vNBd_Qxy2VJWaKGNwI1ArKCuD4guqg2ssTdFs8yKif_P8TUS5Ump72RxgoCeWdbDC3hGLdQEGRtgxHlBnJetM6WaXO7NZ02oSzFPxF9-hPcIPt4JwkSNcF7M18XgRT_zCZPcuuyNt6rYOJcfFPGIUW4EQX65Rn05XTkgNIp5pyMfTCDoNwX554l98WRS3EK7dPjIA-k-6bgf_aBw3I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979819806</pqid></control><display><type>article</type><title>Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Henkel, Sebastian G ; Ter Beek, Alexander ; Steinsiek, Sonja ; Stagge, Stefan ; Bettenbrock, Katja ; de Mattos, M Joost Teixeira ; Sauter, Thomas ; Sawodny, Oliver ; Ederer, Michael</creator><contributor>Torres, Néstor V.</contributor><creatorcontrib>Henkel, Sebastian G ; Ter Beek, Alexander ; Steinsiek, Sonja ; Stagge, Stefan ; Bettenbrock, Katja ; de Mattos, M Joost Teixeira ; Sauter, Thomas ; Sawodny, Oliver ; Ederer, Michael ; Torres, Néstor V.</creatorcontrib><description>For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0107640</identifier><identifier>PMID: 25268772</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Aerobic conditions ; Aerobiosis ; Anaerobic conditions ; Anaerobiosis ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Biology ; Biology and Life Sciences ; Computer and Information Sciences ; Cytochrome ; Dehydrogenases ; Dilution ; E coli ; Electron Transport ; Electron transport chain ; Electron Transport Chain Complex Proteins - genetics ; Electron Transport Chain Complex Proteins - metabolism ; Electrons ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Excretion ; Fermentation ; Gene expression ; Glucose ; Kinases ; Kinetics ; Life sciences ; Mathematical models ; Metabolism ; Models, Biological ; Oxygen ; Oxygen - physiology ; Parameter identification ; Physiology ; Process parameters ; Quinones ; Redox properties ; Regulators ; Research and Analysis Methods ; Substrates ; Transcription ; Ubiquinol ; Ubiquinone</subject><ispartof>PloS one, 2014-09, Vol.9 (9), p.e107640-e107640</ispartof><rights>2014 Henkel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Henkel et al 2014 Henkel et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-8a66c5ab73b63f171a85d1a4091876d0e4cb3d785f6b14c50ff25a582f4dffef3</citedby><cites>FETCH-LOGICAL-c526t-8a66c5ab73b63f171a85d1a4091876d0e4cb3d785f6b14c50ff25a582f4dffef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1979819806/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1979819806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25268772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Torres, Néstor V.</contributor><creatorcontrib>Henkel, Sebastian G</creatorcontrib><creatorcontrib>Ter Beek, Alexander</creatorcontrib><creatorcontrib>Steinsiek, Sonja</creatorcontrib><creatorcontrib>Stagge, Stefan</creatorcontrib><creatorcontrib>Bettenbrock, Katja</creatorcontrib><creatorcontrib>de Mattos, M Joost Teixeira</creatorcontrib><creatorcontrib>Sauter, Thomas</creatorcontrib><creatorcontrib>Sawodny, Oliver</creatorcontrib><creatorcontrib>Ederer, Michael</creatorcontrib><title>Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.</description><subject>Adaptation</subject><subject>Aerobic conditions</subject><subject>Aerobiosis</subject><subject>Anaerobic conditions</subject><subject>Anaerobiosis</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Cytochrome</subject><subject>Dehydrogenases</subject><subject>Dilution</subject><subject>E coli</subject><subject>Electron Transport</subject><subject>Electron transport chain</subject><subject>Electron Transport Chain Complex Proteins - genetics</subject><subject>Electron Transport Chain Complex Proteins - metabolism</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Excretion</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Life sciences</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>Oxygen</subject><subject>Oxygen - physiology</subject><subject>Parameter identification</subject><subject>Physiology</subject><subject>Process parameters</subject><subject>Quinones</subject><subject>Redox properties</subject><subject>Regulators</subject><subject>Research and Analysis Methods</subject><subject>Substrates</subject><subject>Transcription</subject><subject>Ubiquinol</subject><subject>Ubiquinone</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUs1u1DAYjBCIlsIbILDEoVx2sePfXCrRqpRKlXqBs-U4duKV1w52UrFvj5dNq7bqyZY9M9_Mp6mqjwiuEebo2ybOKSi_HmMwa4ggZwS-qo5Rg-sVqyF-_eh-VL3LeQMhxYKxt9VRTWsmOK-Pq-FcZadBMv3s1RTTDozJBe1GbzKIFlxmPZjk9OAU0NG70wyMN3pKMYApqZDHmCagB-UCsDGBO5V2LvQg_t31JhRK6NzkYsjvqzdW-Ww-LOdJ9fvH5a-Ln6ub26vri-83K108TSuhGNNUtRy3DFvEkRK0Q4rABgnOOmiIbnHHBbWsRURTaG1NFRW1JZ21xuKT6vNBd_Qxy2VJWaKGNwI1ArKCuD4guqg2ssTdFs8yKif_P8TUS5Ump72RxgoCeWdbDC3hGLdQEGRtgxHlBnJetM6WaXO7NZ02oSzFPxF9-hPcIPt4JwkSNcF7M18XgRT_zCZPcuuyNt6rYOJcfFPGIUW4EQX65Rn05XTkgNIp5pyMfTCDoNwX554l98WRS3EK7dPjIA-k-6bgf_aBw3I</recordid><startdate>20140930</startdate><enddate>20140930</enddate><creator>Henkel, Sebastian G</creator><creator>Ter Beek, Alexander</creator><creator>Steinsiek, Sonja</creator><creator>Stagge, Stefan</creator><creator>Bettenbrock, Katja</creator><creator>de Mattos, M Joost Teixeira</creator><creator>Sauter, Thomas</creator><creator>Sawodny, Oliver</creator><creator>Ederer, Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140930</creationdate><title>Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions</title><author>Henkel, Sebastian G ; Ter Beek, Alexander ; Steinsiek, Sonja ; Stagge, Stefan ; Bettenbrock, Katja ; de Mattos, M Joost Teixeira ; Sauter, Thomas ; Sawodny, Oliver ; Ederer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-8a66c5ab73b63f171a85d1a4091876d0e4cb3d785f6b14c50ff25a582f4dffef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Aerobic conditions</topic><topic>Aerobiosis</topic><topic>Anaerobic conditions</topic><topic>Anaerobiosis</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Cytochrome</topic><topic>Dehydrogenases</topic><topic>Dilution</topic><topic>E coli</topic><topic>Electron Transport</topic><topic>Electron transport chain</topic><topic>Electron Transport Chain Complex Proteins - genetics</topic><topic>Electron Transport Chain Complex Proteins - metabolism</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Excretion</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Life sciences</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>Oxygen</topic><topic>Oxygen - physiology</topic><topic>Parameter identification</topic><topic>Physiology</topic><topic>Process parameters</topic><topic>Quinones</topic><topic>Redox properties</topic><topic>Regulators</topic><topic>Research and Analysis Methods</topic><topic>Substrates</topic><topic>Transcription</topic><topic>Ubiquinol</topic><topic>Ubiquinone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henkel, Sebastian G</creatorcontrib><creatorcontrib>Ter Beek, Alexander</creatorcontrib><creatorcontrib>Steinsiek, Sonja</creatorcontrib><creatorcontrib>Stagge, Stefan</creatorcontrib><creatorcontrib>Bettenbrock, Katja</creatorcontrib><creatorcontrib>de Mattos, M Joost Teixeira</creatorcontrib><creatorcontrib>Sauter, Thomas</creatorcontrib><creatorcontrib>Sawodny, Oliver</creatorcontrib><creatorcontrib>Ederer, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henkel, Sebastian G</au><au>Ter Beek, Alexander</au><au>Steinsiek, Sonja</au><au>Stagge, Stefan</au><au>Bettenbrock, Katja</au><au>de Mattos, M Joost Teixeira</au><au>Sauter, Thomas</au><au>Sawodny, Oliver</au><au>Ederer, Michael</au><au>Torres, Néstor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-09-30</date><risdate>2014</risdate><volume>9</volume><issue>9</issue><spage>e107640</spage><epage>e107640</epage><pages>e107640-e107640</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25268772</pmid><doi>10.1371/journal.pone.0107640</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-09, Vol.9 (9), p.e107640-e107640
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1979819806
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Adaptation
Aerobic conditions
Aerobiosis
Anaerobic conditions
Anaerobiosis
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Biology
Biology and Life Sciences
Computer and Information Sciences
Cytochrome
Dehydrogenases
Dilution
E coli
Electron Transport
Electron transport chain
Electron Transport Chain Complex Proteins - genetics
Electron Transport Chain Complex Proteins - metabolism
Electrons
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Excretion
Fermentation
Gene expression
Glucose
Kinases
Kinetics
Life sciences
Mathematical models
Metabolism
Models, Biological
Oxygen
Oxygen - physiology
Parameter identification
Physiology
Process parameters
Quinones
Redox properties
Regulators
Research and Analysis Methods
Substrates
Transcription
Ubiquinol
Ubiquinone
title Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basic%20regulatory%20principles%20of%20Escherichia%20coli's%20electron%20transport%20chain%20for%20varying%20oxygen%20conditions&rft.jtitle=PloS%20one&rft.au=Henkel,%20Sebastian%20G&rft.date=2014-09-30&rft.volume=9&rft.issue=9&rft.spage=e107640&rft.epage=e107640&rft.pages=e107640-e107640&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0107640&rft_dat=%3Cproquest_plos_%3E1979819806%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-8a66c5ab73b63f171a85d1a4091876d0e4cb3d785f6b14c50ff25a582f4dffef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1979819806&rft_id=info:pmid/25268772&rfr_iscdi=true