Loading…

Reduction in Musca domestica fecundity by dsRNA-mediated gene knockdown

House flies (Musca domestica) are worldwide agricultural pests with estimated control costs at $375 million annually in the U.S. Non-target effects and widespread resistance challenge the efficacy of traditional chemical control. Double stranded RNA (dsRNA) has been suggested as a biopesticide for M...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-01, Vol.13 (1), p.e0187353-e0187353
Main Authors: Sanscrainte, Neil D, Arimoto, Hanayo, Waits, Christy M, Li, Lucy Y, Johnson, Dana, Geden, Chris, Becnel, James J, Estep, Alden S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:House flies (Musca domestica) are worldwide agricultural pests with estimated control costs at $375 million annually in the U.S. Non-target effects and widespread resistance challenge the efficacy of traditional chemical control. Double stranded RNA (dsRNA) has been suggested as a biopesticide for M. domestica but a phenotypic response due to the induction of the RNAi pathway has not been demonstrated in adults. In this study female house flies were injected with dsRNA targeting actin-5C or ribosomal protein (RP) transcripts RPL26 and RPS6. Ovaries showed highly reduced provisioning and clutch reductions of 94-99% in RP dsRNA treated flies but not in actin-5C or GFP treated flies. Gene expression levels were significantly and specifically reduced in dsRNA injected groups but remained unchanged in the control dsGFP treated group. Furthermore, injections with an Aedes aegypti conspecific dsRNA designed against RPS6 did not impact fecundity, demonstrating species specificity of the RNAi response. Analysis of M. domestica tissues following RPS6 dsRNA injection showed significant reduction of transcript levels in the head, thorax, and abdomen but increased expression in ovarian tissues. This study demonstrates that exogenous dsRNA is specifically effective and has potential efficacy as a highly specific biocontrol intervention in adult house flies. Further work is required to develop effective methods for delivery of dsRNA to adult flies.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0187353