Loading…

5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice

In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment f...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-01, Vol.13 (1), p.e0189593-e0189593
Main Authors: Saitoh, Shinichi, Okano, Satoshi, Nohara, Hidekazu, Nakano, Hiroshi, Shirasawa, Nobuyuki, Naito, Akira, Yamamoto, Masayuki, Kelly, Vincent P, Takahashi, Kiwamu, Tanaka, Tohru, Nakajima, Motowo, Nakajima, Osamu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c593t-5890b72498241d0c1421a5ed065564610e2d9dd2511f627a9c7629fbfc12fc693
cites cdi_FETCH-LOGICAL-c593t-5890b72498241d0c1421a5ed065564610e2d9dd2511f627a9c7629fbfc12fc693
container_end_page e0189593
container_issue 1
container_start_page e0189593
container_title PloS one
container_volume 13
creator Saitoh, Shinichi
Okano, Satoshi
Nohara, Hidekazu
Nakano, Hiroshi
Shirasawa, Nobuyuki
Naito, Akira
Yamamoto, Masayuki
Kelly, Vincent P
Takahashi, Kiwamu
Tanaka, Tohru
Nakajima, Motowo
Nakajima, Osamu
description In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment for individuals with prediabetes and type-2 diabetes mellitus. These studies imply that a mechanism exists by which ALA or heme can control glucose metabolism. The ALAS1 gene encodes a ubiquitously expressed isozyme. Mice heterozygous null for ALAS1 (A1+/-s) experience impaired glucose tolerance (IGT) and insulin resistance (IR) beyond 20-weeks of age (aged A1+/-s). IGT and IR were remedied in aged A1+/-s by the oral administration of ALA for 1 week. However, the positive effect of ALA proved to be reversible and was lost upon termination of ALA administration. In the skeletal muscle of aged A1+/-s an attenuation of mitochondrial function is observed, coinciding with IGT and IR. Oral administration of ALA for 1-week brought about only a partial improvement in mitochondrial activity however, a 6-week period of ALA treatment was sufficient to remedy mitochondrial function. Studies on differentiated C2C12 myocytes indicate that the impairment of glucose metabolism is a cell autonomous effect and that ALA deficiency ultimately leads to heme depletion. This sequela is evidenced by a reduction of glucose uptake in C2C12 cells following the knockdown of ALAS1 or the inhibition of heme biosynthesis by succinylacetone. Our data provide in vivo proof that ALA deficiency attenuates mitochondrial function, and causes IGT and IR in an age-dependent manner. The data reveals an unexpected metabolic link between heme and glucose that is relevant to the pathogenesis of IGT/IR.
doi_str_mv 10.1371/journal.pone.0189593
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1990919046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A524690770</galeid><doaj_id>oai_doaj_org_article_efc895c4df474e859b68c6e39f1d1f91</doaj_id><sourcerecordid>A524690770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-5890b72498241d0c1421a5ed065564610e2d9dd2511f627a9c7629fbfc12fc693</originalsourceid><addsrcrecordid>eNptUl1vFCEUnRiNrdV_YJTEl_qwKzADM7yYbBo_mjTxRZ8Je7nsspmBFWZq-oP8n7Ifbbqm4QFyOedczuVU1VtG56xu2adNnFIw_XwbA84p65RQ9bPqnKmazySn9fNH57PqVc4bSkXdSfmyOuOqlk2n6Hn1V8zM4EPs8XbqffBADHhLLhc3i4_EovPgMcAdATNlzMQPW-MTWrLqJ4gZyViYyQRAYoIlPuSdCkmYfR73ZYg-FEUMI_njx3WBETOOGCYz-hhIdGTwY4R1DDZ50xM3BdjfFBmzKp0GD_i6euFMn_HNcb-ofn398vPq--zmx7frq8XNDIr5cSaKpWXLG9XxhlkKrOHMCLRUCiEbyShyq6zlgjEneWsUtJIrt3TAuAOp6ovq_UF328esjxPOmilFFVO0kQVxfUDYaDZ6m_xg0p2Oxut9IaaVNmn00KNGB-VToLGuaRvshFrKDiTWyjHLnGJF6_Ox27Qc0EKZUTL9iejpTfBrvYq3WrRdXYuuCFweBVL8PWEe9eAzYN-bgHHav5uxVkm1g374D_q0uyNqZYoBH1wsfWEnqheCN1LRtqUFNX8CVZbF8lkljs6X-gmhORAgxZwTugePjOpdmO8fo3dh1scwF9q7x_N5IN2nt_4HNmf0IA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990919046</pqid></control><display><type>article</type><title>5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Saitoh, Shinichi ; Okano, Satoshi ; Nohara, Hidekazu ; Nakano, Hiroshi ; Shirasawa, Nobuyuki ; Naito, Akira ; Yamamoto, Masayuki ; Kelly, Vincent P ; Takahashi, Kiwamu ; Tanaka, Tohru ; Nakajima, Motowo ; Nakajima, Osamu</creator><contributor>Szakacs, Gergely</contributor><creatorcontrib>Saitoh, Shinichi ; Okano, Satoshi ; Nohara, Hidekazu ; Nakano, Hiroshi ; Shirasawa, Nobuyuki ; Naito, Akira ; Yamamoto, Masayuki ; Kelly, Vincent P ; Takahashi, Kiwamu ; Tanaka, Tohru ; Nakajima, Motowo ; Nakajima, Osamu ; Szakacs, Gergely</creatorcontrib><description>In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment for individuals with prediabetes and type-2 diabetes mellitus. These studies imply that a mechanism exists by which ALA or heme can control glucose metabolism. The ALAS1 gene encodes a ubiquitously expressed isozyme. Mice heterozygous null for ALAS1 (A1+/-s) experience impaired glucose tolerance (IGT) and insulin resistance (IR) beyond 20-weeks of age (aged A1+/-s). IGT and IR were remedied in aged A1+/-s by the oral administration of ALA for 1 week. However, the positive effect of ALA proved to be reversible and was lost upon termination of ALA administration. In the skeletal muscle of aged A1+/-s an attenuation of mitochondrial function is observed, coinciding with IGT and IR. Oral administration of ALA for 1-week brought about only a partial improvement in mitochondrial activity however, a 6-week period of ALA treatment was sufficient to remedy mitochondrial function. Studies on differentiated C2C12 myocytes indicate that the impairment of glucose metabolism is a cell autonomous effect and that ALA deficiency ultimately leads to heme depletion. This sequela is evidenced by a reduction of glucose uptake in C2C12 cells following the knockdown of ALAS1 or the inhibition of heme biosynthesis by succinylacetone. Our data provide in vivo proof that ALA deficiency attenuates mitochondrial function, and causes IGT and IR in an age-dependent manner. The data reveals an unexpected metabolic link between heme and glucose that is relevant to the pathogenesis of IGT/IR.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0189593</identifier><identifier>PMID: 29364890</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>5-Aminolevulinate Synthetase - genetics ; 5-Aminolevulinate Synthetase - metabolism ; Acids ; Age ; Aminolevulinic Acid ; Animals ; Attenuation ; Biochemistry ; Biology and Life Sciences ; Biosynthesis ; Blood Glucose - metabolism ; Cellular manufacture ; Development and progression ; Diabetes ; Diabetes mellitus ; Genetic aspects ; Glucagon - metabolism ; Gluconeogenesis - genetics ; Glucose ; Glucose Intolerance ; Glucose metabolism ; Glucose tolerance ; Heme ; Homeostasis ; Insulin ; Insulin - metabolism ; Insulin Resistance ; Levulinic Acids - metabolism ; Medicine ; Medicine and Health Sciences ; Metabolism ; Mice ; Mice, Transgenic ; Mitochondria ; Mitochondria - metabolism ; Muscles ; Musculoskeletal system ; Myocytes ; Oral administration ; Pathogenesis ; Pharmaceuticals ; Physiological aspects ; Risk factors ; Rodents ; Signal Transduction ; Skeletal muscle ; Trends ; Type 2 diabetes ; University faculty ; Vertebrates</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0189593-e0189593</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Saitoh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Saitoh et al 2018 Saitoh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-5890b72498241d0c1421a5ed065564610e2d9dd2511f627a9c7629fbfc12fc693</citedby><cites>FETCH-LOGICAL-c593t-5890b72498241d0c1421a5ed065564610e2d9dd2511f627a9c7629fbfc12fc693</cites><orcidid>0000-0001-9352-2446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1990919046/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1990919046?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29364890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Szakacs, Gergely</contributor><creatorcontrib>Saitoh, Shinichi</creatorcontrib><creatorcontrib>Okano, Satoshi</creatorcontrib><creatorcontrib>Nohara, Hidekazu</creatorcontrib><creatorcontrib>Nakano, Hiroshi</creatorcontrib><creatorcontrib>Shirasawa, Nobuyuki</creatorcontrib><creatorcontrib>Naito, Akira</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Kelly, Vincent P</creatorcontrib><creatorcontrib>Takahashi, Kiwamu</creatorcontrib><creatorcontrib>Tanaka, Tohru</creatorcontrib><creatorcontrib>Nakajima, Motowo</creatorcontrib><creatorcontrib>Nakajima, Osamu</creatorcontrib><title>5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment for individuals with prediabetes and type-2 diabetes mellitus. These studies imply that a mechanism exists by which ALA or heme can control glucose metabolism. The ALAS1 gene encodes a ubiquitously expressed isozyme. Mice heterozygous null for ALAS1 (A1+/-s) experience impaired glucose tolerance (IGT) and insulin resistance (IR) beyond 20-weeks of age (aged A1+/-s). IGT and IR were remedied in aged A1+/-s by the oral administration of ALA for 1 week. However, the positive effect of ALA proved to be reversible and was lost upon termination of ALA administration. In the skeletal muscle of aged A1+/-s an attenuation of mitochondrial function is observed, coinciding with IGT and IR. Oral administration of ALA for 1-week brought about only a partial improvement in mitochondrial activity however, a 6-week period of ALA treatment was sufficient to remedy mitochondrial function. Studies on differentiated C2C12 myocytes indicate that the impairment of glucose metabolism is a cell autonomous effect and that ALA deficiency ultimately leads to heme depletion. This sequela is evidenced by a reduction of glucose uptake in C2C12 cells following the knockdown of ALAS1 or the inhibition of heme biosynthesis by succinylacetone. Our data provide in vivo proof that ALA deficiency attenuates mitochondrial function, and causes IGT and IR in an age-dependent manner. The data reveals an unexpected metabolic link between heme and glucose that is relevant to the pathogenesis of IGT/IR.</description><subject>5-Aminolevulinate Synthetase - genetics</subject><subject>5-Aminolevulinate Synthetase - metabolism</subject><subject>Acids</subject><subject>Age</subject><subject>Aminolevulinic Acid</subject><subject>Animals</subject><subject>Attenuation</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Blood Glucose - metabolism</subject><subject>Cellular manufacture</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Genetic aspects</subject><subject>Glucagon - metabolism</subject><subject>Gluconeogenesis - genetics</subject><subject>Glucose</subject><subject>Glucose Intolerance</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Heme</subject><subject>Homeostasis</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance</subject><subject>Levulinic Acids - metabolism</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myocytes</subject><subject>Oral administration</subject><subject>Pathogenesis</subject><subject>Pharmaceuticals</subject><subject>Physiological aspects</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><subject>Trends</subject><subject>Type 2 diabetes</subject><subject>University faculty</subject><subject>Vertebrates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1vFCEUnRiNrdV_YJTEl_qwKzADM7yYbBo_mjTxRZ8Je7nsspmBFWZq-oP8n7Ifbbqm4QFyOedczuVU1VtG56xu2adNnFIw_XwbA84p65RQ9bPqnKmazySn9fNH57PqVc4bSkXdSfmyOuOqlk2n6Hn1V8zM4EPs8XbqffBADHhLLhc3i4_EovPgMcAdATNlzMQPW-MTWrLqJ4gZyViYyQRAYoIlPuSdCkmYfR73ZYg-FEUMI_njx3WBETOOGCYz-hhIdGTwY4R1DDZ50xM3BdjfFBmzKp0GD_i6euFMn_HNcb-ofn398vPq--zmx7frq8XNDIr5cSaKpWXLG9XxhlkKrOHMCLRUCiEbyShyq6zlgjEneWsUtJIrt3TAuAOp6ovq_UF328esjxPOmilFFVO0kQVxfUDYaDZ6m_xg0p2Oxut9IaaVNmn00KNGB-VToLGuaRvshFrKDiTWyjHLnGJF6_Ox27Qc0EKZUTL9iejpTfBrvYq3WrRdXYuuCFweBVL8PWEe9eAzYN-bgHHav5uxVkm1g374D_q0uyNqZYoBH1wsfWEnqheCN1LRtqUFNX8CVZbF8lkljs6X-gmhORAgxZwTugePjOpdmO8fo3dh1scwF9q7x_N5IN2nt_4HNmf0IA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Saitoh, Shinichi</creator><creator>Okano, Satoshi</creator><creator>Nohara, Hidekazu</creator><creator>Nakano, Hiroshi</creator><creator>Shirasawa, Nobuyuki</creator><creator>Naito, Akira</creator><creator>Yamamoto, Masayuki</creator><creator>Kelly, Vincent P</creator><creator>Takahashi, Kiwamu</creator><creator>Tanaka, Tohru</creator><creator>Nakajima, Motowo</creator><creator>Nakajima, Osamu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9352-2446</orcidid></search><sort><creationdate>20180101</creationdate><title>5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice</title><author>Saitoh, Shinichi ; Okano, Satoshi ; Nohara, Hidekazu ; Nakano, Hiroshi ; Shirasawa, Nobuyuki ; Naito, Akira ; Yamamoto, Masayuki ; Kelly, Vincent P ; Takahashi, Kiwamu ; Tanaka, Tohru ; Nakajima, Motowo ; Nakajima, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-5890b72498241d0c1421a5ed065564610e2d9dd2511f627a9c7629fbfc12fc693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>5-Aminolevulinate Synthetase - genetics</topic><topic>5-Aminolevulinate Synthetase - metabolism</topic><topic>Acids</topic><topic>Age</topic><topic>Aminolevulinic Acid</topic><topic>Animals</topic><topic>Attenuation</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Blood Glucose - metabolism</topic><topic>Cellular manufacture</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Genetic aspects</topic><topic>Glucagon - metabolism</topic><topic>Gluconeogenesis - genetics</topic><topic>Glucose</topic><topic>Glucose Intolerance</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Heme</topic><topic>Homeostasis</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance</topic><topic>Levulinic Acids - metabolism</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myocytes</topic><topic>Oral administration</topic><topic>Pathogenesis</topic><topic>Pharmaceuticals</topic><topic>Physiological aspects</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><topic>Trends</topic><topic>Type 2 diabetes</topic><topic>University faculty</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saitoh, Shinichi</creatorcontrib><creatorcontrib>Okano, Satoshi</creatorcontrib><creatorcontrib>Nohara, Hidekazu</creatorcontrib><creatorcontrib>Nakano, Hiroshi</creatorcontrib><creatorcontrib>Shirasawa, Nobuyuki</creatorcontrib><creatorcontrib>Naito, Akira</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><creatorcontrib>Kelly, Vincent P</creatorcontrib><creatorcontrib>Takahashi, Kiwamu</creatorcontrib><creatorcontrib>Tanaka, Tohru</creatorcontrib><creatorcontrib>Nakajima, Motowo</creatorcontrib><creatorcontrib>Nakajima, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saitoh, Shinichi</au><au>Okano, Satoshi</au><au>Nohara, Hidekazu</au><au>Nakano, Hiroshi</au><au>Shirasawa, Nobuyuki</au><au>Naito, Akira</au><au>Yamamoto, Masayuki</au><au>Kelly, Vincent P</au><au>Takahashi, Kiwamu</au><au>Tanaka, Tohru</au><au>Nakajima, Motowo</au><au>Nakajima, Osamu</au><au>Szakacs, Gergely</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0189593</spage><epage>e0189593</epage><pages>e0189593-e0189593</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment for individuals with prediabetes and type-2 diabetes mellitus. These studies imply that a mechanism exists by which ALA or heme can control glucose metabolism. The ALAS1 gene encodes a ubiquitously expressed isozyme. Mice heterozygous null for ALAS1 (A1+/-s) experience impaired glucose tolerance (IGT) and insulin resistance (IR) beyond 20-weeks of age (aged A1+/-s). IGT and IR were remedied in aged A1+/-s by the oral administration of ALA for 1 week. However, the positive effect of ALA proved to be reversible and was lost upon termination of ALA administration. In the skeletal muscle of aged A1+/-s an attenuation of mitochondrial function is observed, coinciding with IGT and IR. Oral administration of ALA for 1-week brought about only a partial improvement in mitochondrial activity however, a 6-week period of ALA treatment was sufficient to remedy mitochondrial function. Studies on differentiated C2C12 myocytes indicate that the impairment of glucose metabolism is a cell autonomous effect and that ALA deficiency ultimately leads to heme depletion. This sequela is evidenced by a reduction of glucose uptake in C2C12 cells following the knockdown of ALAS1 or the inhibition of heme biosynthesis by succinylacetone. Our data provide in vivo proof that ALA deficiency attenuates mitochondrial function, and causes IGT and IR in an age-dependent manner. The data reveals an unexpected metabolic link between heme and glucose that is relevant to the pathogenesis of IGT/IR.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29364890</pmid><doi>10.1371/journal.pone.0189593</doi><orcidid>https://orcid.org/0000-0001-9352-2446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-01, Vol.13 (1), p.e0189593-e0189593
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1990919046
source ProQuest - Publicly Available Content Database; PubMed Central
subjects 5-Aminolevulinate Synthetase - genetics
5-Aminolevulinate Synthetase - metabolism
Acids
Age
Aminolevulinic Acid
Animals
Attenuation
Biochemistry
Biology and Life Sciences
Biosynthesis
Blood Glucose - metabolism
Cellular manufacture
Development and progression
Diabetes
Diabetes mellitus
Genetic aspects
Glucagon - metabolism
Gluconeogenesis - genetics
Glucose
Glucose Intolerance
Glucose metabolism
Glucose tolerance
Heme
Homeostasis
Insulin
Insulin - metabolism
Insulin Resistance
Levulinic Acids - metabolism
Medicine
Medicine and Health Sciences
Metabolism
Mice
Mice, Transgenic
Mitochondria
Mitochondria - metabolism
Muscles
Musculoskeletal system
Myocytes
Oral administration
Pathogenesis
Pharmaceuticals
Physiological aspects
Risk factors
Rodents
Signal Transduction
Skeletal muscle
Trends
Type 2 diabetes
University faculty
Vertebrates
title 5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5-aminolevulinic%20acid%20(ALA)%20deficiency%20causes%20impaired%20glucose%20tolerance%20and%20insulin%20resistance%20coincident%20with%20an%20attenuation%20of%20mitochondrial%20function%20in%20aged%20mice&rft.jtitle=PloS%20one&rft.au=Saitoh,%20Shinichi&rft.date=2018-01-01&rft.volume=13&rft.issue=1&rft.spage=e0189593&rft.epage=e0189593&rft.pages=e0189593-e0189593&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0189593&rft_dat=%3Cgale_plos_%3EA524690770%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c593t-5890b72498241d0c1421a5ed065564610e2d9dd2511f627a9c7629fbfc12fc693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1990919046&rft_id=info:pmid/29364890&rft_galeid=A524690770&rfr_iscdi=true