Loading…

Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)

The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive targe...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2014-08, Vol.9 (8), p.e106243-e106243
Main Authors: Haymond, Amanda, Johny, Chinchu, Dowdy, Tyrone, Schweibenz, Brandon, Villarroel, Karen, Young, Richard, Mantooth, Clark J, Patel, Trishal, Bases, Jessica, San Jose, Geraldine, Jackson, Emily R, Dowd, Cynthia S, Couch, Robin D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-ba9de9e5d053fd47199cbe76db13e67625f5b7b7193f557af52ce11d3e07bd463
cites cdi_FETCH-LOGICAL-c526t-ba9de9e5d053fd47199cbe76db13e67625f5b7b7193f557af52ce11d3e07bd463
container_end_page e106243
container_issue 8
container_start_page e106243
container_title PloS one
container_volume 9
creator Haymond, Amanda
Johny, Chinchu
Dowdy, Tyrone
Schweibenz, Brandon
Villarroel, Karen
Young, Richard
Mantooth, Clark J
Patel, Trishal
Bases, Jessica
San Jose, Geraldine
Jackson, Emily R
Dowd, Cynthia S
Couch, Robin D
description The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.
doi_str_mv 10.1371/journal.pone.0106243
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2014389445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_dd1996804d5d44a7a770cf35a3430aee</doaj_id><sourcerecordid>2014389445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ba9de9e5d053fd47199cbe76db13e67625f5b7b7193f557af52ce11d3e07bd463</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIloE_QGCJTVlksOPXZIOESoGKIljAgpV1Y980HmXi1E5Qhy_gs3E706pFrGzfe865D5-ieM7oknHN3qzDHAfol2MYcEkZVZXgD4pDVvOqVBXlD-_cD4onKa0plXyl1OPioJJMM87rw-LPZz_g5C2xHUSwE0b_GyYfBgKDI9D3IV3FLPFD5xt_nQktmTokPzEmP3ggI6bJJ8JKh-FyW74vL7f9nIlIZDl2IY0dTEgiutlOwaewwQg5efTl5BtJ22Hq8uv10-JRC33CZ_tzUfz4cPL9-FN59vXj6fG7s9LKSk1lA7XDGqXLs7ROaFbXtkGtXMM4Kq0q2cpGNznOWyk1tLKyyJjjSHXjhOKL4uVOd8wdmv0Sk6koE3xVCyEz4nSHcAHWZox-A3FrAnhzHQjx3EDMK-vROJfrqxUVTjohQIPW1LZcAhecAmLWeruvNjcbdBaHKUJ_T_R-ZvCdOQ-_jGCilppmgaO9QAwXc1602fhkse9hwDAnw6SsFVuJ_PmL4tU_0P9PJ3YoG0NKEdvbZhg1V8a6YZkrY5m9sTLtxd1Bbkk3TuJ_AaO8zs4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014389445</pqid></control><display><type>article</type><title>Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Coronavirus Research Database</source><creator>Haymond, Amanda ; Johny, Chinchu ; Dowdy, Tyrone ; Schweibenz, Brandon ; Villarroel, Karen ; Young, Richard ; Mantooth, Clark J ; Patel, Trishal ; Bases, Jessica ; San Jose, Geraldine ; Jackson, Emily R ; Dowd, Cynthia S ; Couch, Robin D</creator><contributor>Kashanchi, Fatah</contributor><creatorcontrib>Haymond, Amanda ; Johny, Chinchu ; Dowdy, Tyrone ; Schweibenz, Brandon ; Villarroel, Karen ; Young, Richard ; Mantooth, Clark J ; Patel, Trishal ; Bases, Jessica ; San Jose, Geraldine ; Jackson, Emily R ; Dowd, Cynthia S ; Couch, Robin D ; Kashanchi, Fatah</creatorcontrib><description>The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0106243</identifier><identifier>PMID: 25171339</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aldose-Ketose Isomerases - chemistry ; Aldose-Ketose Isomerases - genetics ; Allosteric properties ; Allosteric Regulation ; Analogs ; Antibiotic resistance ; Antibiotics ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Binding sites ; Biochemistry ; Biology and Life Sciences ; Biosynthesis ; Catalysis ; Chemistry ; Clinical trials ; D-Xylulose 5-phosphate ; Drug development ; E coli ; Enzymes ; Epidemics ; Erythritol - analogs &amp; derivatives ; Erythritol - biosynthesis ; Erythritol - chemistry ; Escherichia coli ; Fosfomycin - analogs &amp; derivatives ; Fosfomycin - chemistry ; Fosmidomycin ; High-throughput screening ; Identification ; Isomerization ; Kinases ; Kinetics ; Medical screening ; Medicine and Health Sciences ; NADP ; Natural products ; Phosphates ; Proteins ; Reductoisomerase ; Signal transduction ; Synechocystis ; Terpenes ; Ubiquinone ; Xylulose ; Yersinia pestis ; Yersinia pestis - enzymology ; Yersinia pestis - genetics</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e106243-e106243</ispartof><rights>2014 Haymond et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Haymond et al 2014 Haymond et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ba9de9e5d053fd47199cbe76db13e67625f5b7b7193f557af52ce11d3e07bd463</citedby><cites>FETCH-LOGICAL-c526t-ba9de9e5d053fd47199cbe76db13e67625f5b7b7193f557af52ce11d3e07bd463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2014389445/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2014389445?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25171339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kashanchi, Fatah</contributor><creatorcontrib>Haymond, Amanda</creatorcontrib><creatorcontrib>Johny, Chinchu</creatorcontrib><creatorcontrib>Dowdy, Tyrone</creatorcontrib><creatorcontrib>Schweibenz, Brandon</creatorcontrib><creatorcontrib>Villarroel, Karen</creatorcontrib><creatorcontrib>Young, Richard</creatorcontrib><creatorcontrib>Mantooth, Clark J</creatorcontrib><creatorcontrib>Patel, Trishal</creatorcontrib><creatorcontrib>Bases, Jessica</creatorcontrib><creatorcontrib>San Jose, Geraldine</creatorcontrib><creatorcontrib>Jackson, Emily R</creatorcontrib><creatorcontrib>Dowd, Cynthia S</creatorcontrib><creatorcontrib>Couch, Robin D</creatorcontrib><title>Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.</description><subject>Aldose-Ketose Isomerases - chemistry</subject><subject>Aldose-Ketose Isomerases - genetics</subject><subject>Allosteric properties</subject><subject>Allosteric Regulation</subject><subject>Analogs</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Clinical trials</subject><subject>D-Xylulose 5-phosphate</subject><subject>Drug development</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Epidemics</subject><subject>Erythritol - analogs &amp; derivatives</subject><subject>Erythritol - biosynthesis</subject><subject>Erythritol - chemistry</subject><subject>Escherichia coli</subject><subject>Fosfomycin - analogs &amp; derivatives</subject><subject>Fosfomycin - chemistry</subject><subject>Fosmidomycin</subject><subject>High-throughput screening</subject><subject>Identification</subject><subject>Isomerization</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>NADP</subject><subject>Natural products</subject><subject>Phosphates</subject><subject>Proteins</subject><subject>Reductoisomerase</subject><subject>Signal transduction</subject><subject>Synechocystis</subject><subject>Terpenes</subject><subject>Ubiquinone</subject><subject>Xylulose</subject><subject>Yersinia pestis</subject><subject>Yersinia pestis - enzymology</subject><subject>Yersinia pestis - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIloE_QGCJTVlksOPXZIOESoGKIljAgpV1Y980HmXi1E5Qhy_gs3E706pFrGzfe865D5-ieM7oknHN3qzDHAfol2MYcEkZVZXgD4pDVvOqVBXlD-_cD4onKa0plXyl1OPioJJMM87rw-LPZz_g5C2xHUSwE0b_GyYfBgKDI9D3IV3FLPFD5xt_nQktmTokPzEmP3ggI6bJJ8JKh-FyW74vL7f9nIlIZDl2IY0dTEgiutlOwaewwQg5efTl5BtJ22Hq8uv10-JRC33CZ_tzUfz4cPL9-FN59vXj6fG7s9LKSk1lA7XDGqXLs7ROaFbXtkGtXMM4Kq0q2cpGNznOWyk1tLKyyJjjSHXjhOKL4uVOd8wdmv0Sk6koE3xVCyEz4nSHcAHWZox-A3FrAnhzHQjx3EDMK-vROJfrqxUVTjohQIPW1LZcAhecAmLWeruvNjcbdBaHKUJ_T_R-ZvCdOQ-_jGCilppmgaO9QAwXc1602fhkse9hwDAnw6SsFVuJ_PmL4tU_0P9PJ3YoG0NKEdvbZhg1V8a6YZkrY5m9sTLtxd1Bbkk3TuJ_AaO8zs4</recordid><startdate>20140829</startdate><enddate>20140829</enddate><creator>Haymond, Amanda</creator><creator>Johny, Chinchu</creator><creator>Dowdy, Tyrone</creator><creator>Schweibenz, Brandon</creator><creator>Villarroel, Karen</creator><creator>Young, Richard</creator><creator>Mantooth, Clark J</creator><creator>Patel, Trishal</creator><creator>Bases, Jessica</creator><creator>San Jose, Geraldine</creator><creator>Jackson, Emily R</creator><creator>Dowd, Cynthia S</creator><creator>Couch, Robin D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140829</creationdate><title>Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><author>Haymond, Amanda ; Johny, Chinchu ; Dowdy, Tyrone ; Schweibenz, Brandon ; Villarroel, Karen ; Young, Richard ; Mantooth, Clark J ; Patel, Trishal ; Bases, Jessica ; San Jose, Geraldine ; Jackson, Emily R ; Dowd, Cynthia S ; Couch, Robin D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ba9de9e5d053fd47199cbe76db13e67625f5b7b7193f557af52ce11d3e07bd463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aldose-Ketose Isomerases - chemistry</topic><topic>Aldose-Ketose Isomerases - genetics</topic><topic>Allosteric properties</topic><topic>Allosteric Regulation</topic><topic>Analogs</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Clinical trials</topic><topic>D-Xylulose 5-phosphate</topic><topic>Drug development</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Epidemics</topic><topic>Erythritol - analogs &amp; derivatives</topic><topic>Erythritol - biosynthesis</topic><topic>Erythritol - chemistry</topic><topic>Escherichia coli</topic><topic>Fosfomycin - analogs &amp; derivatives</topic><topic>Fosfomycin - chemistry</topic><topic>Fosmidomycin</topic><topic>High-throughput screening</topic><topic>Identification</topic><topic>Isomerization</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>NADP</topic><topic>Natural products</topic><topic>Phosphates</topic><topic>Proteins</topic><topic>Reductoisomerase</topic><topic>Signal transduction</topic><topic>Synechocystis</topic><topic>Terpenes</topic><topic>Ubiquinone</topic><topic>Xylulose</topic><topic>Yersinia pestis</topic><topic>Yersinia pestis - enzymology</topic><topic>Yersinia pestis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haymond, Amanda</creatorcontrib><creatorcontrib>Johny, Chinchu</creatorcontrib><creatorcontrib>Dowdy, Tyrone</creatorcontrib><creatorcontrib>Schweibenz, Brandon</creatorcontrib><creatorcontrib>Villarroel, Karen</creatorcontrib><creatorcontrib>Young, Richard</creatorcontrib><creatorcontrib>Mantooth, Clark J</creatorcontrib><creatorcontrib>Patel, Trishal</creatorcontrib><creatorcontrib>Bases, Jessica</creatorcontrib><creatorcontrib>San Jose, Geraldine</creatorcontrib><creatorcontrib>Jackson, Emily R</creatorcontrib><creatorcontrib>Dowd, Cynthia S</creatorcontrib><creatorcontrib>Couch, Robin D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haymond, Amanda</au><au>Johny, Chinchu</au><au>Dowdy, Tyrone</au><au>Schweibenz, Brandon</au><au>Villarroel, Karen</au><au>Young, Richard</au><au>Mantooth, Clark J</au><au>Patel, Trishal</au><au>Bases, Jessica</au><au>San Jose, Geraldine</au><au>Jackson, Emily R</au><au>Dowd, Cynthia S</au><au>Couch, Robin D</au><au>Kashanchi, Fatah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-29</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e106243</spage><epage>e106243</epage><pages>e106243-e106243</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25171339</pmid><doi>10.1371/journal.pone.0106243</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-08, Vol.9 (8), p.e106243-e106243
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2014389445
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Coronavirus Research Database
subjects Aldose-Ketose Isomerases - chemistry
Aldose-Ketose Isomerases - genetics
Allosteric properties
Allosteric Regulation
Analogs
Antibiotic resistance
Antibiotics
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Binding sites
Biochemistry
Biology and Life Sciences
Biosynthesis
Catalysis
Chemistry
Clinical trials
D-Xylulose 5-phosphate
Drug development
E coli
Enzymes
Epidemics
Erythritol - analogs & derivatives
Erythritol - biosynthesis
Erythritol - chemistry
Escherichia coli
Fosfomycin - analogs & derivatives
Fosfomycin - chemistry
Fosmidomycin
High-throughput screening
Identification
Isomerization
Kinases
Kinetics
Medical screening
Medicine and Health Sciences
NADP
Natural products
Phosphates
Proteins
Reductoisomerase
Signal transduction
Synechocystis
Terpenes
Ubiquinone
Xylulose
Yersinia pestis
Yersinia pestis - enzymology
Yersinia pestis - genetics
title Kinetic characterization and allosteric inhibition of the Yersinia pestis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20characterization%20and%20allosteric%20inhibition%20of%20the%20Yersinia%20pestis%201-deoxy-D-xylulose%205-phosphate%20reductoisomerase%20(MEP%20synthase)&rft.jtitle=PloS%20one&rft.au=Haymond,%20Amanda&rft.date=2014-08-29&rft.volume=9&rft.issue=8&rft.spage=e106243&rft.epage=e106243&rft.pages=e106243-e106243&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0106243&rft_dat=%3Cproquest_plos_%3E2014389445%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-ba9de9e5d053fd47199cbe76db13e67625f5b7b7193f557af52ce11d3e07bd463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014389445&rft_id=info:pmid/25171339&rfr_iscdi=true