Loading…
Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors
The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes re...
Saved in:
Published in: | PLoS neglected tropical diseases 2018-02, Vol.12 (2), p.e0006185 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c624t-a844c5fc7289a888da916e157c8340fc9f622696bdd8334556245c0935a9d8323 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | e0006185 |
container_title | PLoS neglected tropical diseases |
container_volume | 12 |
creator | Nyasembe, Vincent O Tchouassi, David P Pirk, Christian W W Sole, Catherine L Torto, Baldwyn |
description | The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology. |
doi_str_mv | 10.1371/journal.pntd.0006185 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2014507801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A529425079</galeid><doaj_id>oai_doaj_org_article_3cea1817d4dd4276bbc1038601842e08</doaj_id><sourcerecordid>A529425079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-a844c5fc7289a888da916e157c8340fc9f622696bdd8334556245c0935a9d8323</originalsourceid><addsrcrecordid>eNptklGL1DAUhYso7rr6D0QLgvjSMUmTNn0RhkXdhQVf9E0IaZLOZEhzZ5N0Yf-96U53mZElDw233znJvTlF8R6jFa5b_HUHU_DSrfY-6RVCqMGcvSjOcVezirQ1e3m0PyvexLhDiHWM49fFGeloQzBD58XfK4ip3DvpUzlAMD5aFUvpdQlukCpBuK96GY0utUlGJQu-tL5cDwGqFGBvlXTlCPF2sglKbaPJcHlnZmV8W7wapIvm3fK9KP78-P778qq6-fXz-nJ9U6mG0FRJTqlig2oJ7yTnXMsONwazVvGaokF1Q0NI0zW91ryuKWNZxRTKzckuV0h9UXw8-O4dRLEMJgqCMGWo5Qhn4vpAaJA7sQ92lOFegLTioQBhI2RIVjkjamUk5rjVVGtK2qbvFUY1bxDmlBjEs9e35bSpH41Wxqcg3Ynp6R9vt2IDd4LldsiDwZfFIMDtZGISo43KuPwIBqb53qjFmHaUZvTTf-jz3S3URuYGrB8gn6tmU7Fm-a1J5rpMrZ6h8tJmtAq8GWyunwg-Hwm2Rrq0jeCmOQTxFKQHUAWIMZjhaRgYiTmsj7cWc1jFEtYs-3A8yCfRYzrrf3T75RM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014507801</pqid></control><display><type>article</type><title>Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Nyasembe, Vincent O ; Tchouassi, David P ; Pirk, Christian W W ; Sole, Catherine L ; Torto, Baldwyn</creator><contributor>Weiss, Brian L.</contributor><creatorcontrib>Nyasembe, Vincent O ; Tchouassi, David P ; Pirk, Christian W W ; Sole, Catherine L ; Torto, Baldwyn ; Weiss, Brian L.</creatorcontrib><description>The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0006185</identifier><identifier>PMID: 29462150</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyclic Monoterpenes ; Aedes ; Aedes - physiology ; Aedes aegypti ; Aldehydes ; Alkenes ; Animal behavior ; Animals ; Anopheles - physiology ; Anopheles gambiae ; Aquatic insects ; Baits ; Behavior, Animal - physiology ; Benzenoids ; Biology and Life Sciences ; Coccidioidomycosis ; Culicidae ; Dengue ; Dengue - transmission ; Dengue - virology ; Dengue fever ; Dengue Virus ; Deoxyribonucleic acid ; Detection ; Disease Vectors ; Diseases ; DNA ; DNA, Plant ; Electroantennograms ; Exploitation ; Feeding ; Feeding Behavior - psychology ; Female ; Fishing bait ; Flowers & plants ; Forensic science ; Forensic toxicology ; Gas chromatography ; Genes ; Genes, Plant - genetics ; Genetic aspects ; Health risks ; Herbivores ; Host plants ; Host-Parasite Interactions - physiology ; Human diseases ; Identification ; Kenya ; Malaria ; Malaria - transmission ; Male ; Mass spectrometry ; Mass spectroscopy ; Medicine and Health Sciences ; Monoterpenes ; Mosquito Vectors - physiology ; Mosquitoes ; Myrcene ; Ocimene ; Odor ; Odorants ; Odors ; Odour ; Olfaction ; Olfactory stimuli ; Physical Sciences ; Plant Extracts - chemistry ; Plant species ; Plants - chemistry ; Plants - classification ; Plants - genetics ; Public health ; Rift Valley fever ; Rift Valley Fever - transmission ; Saccharides ; Sesquiterpenes ; Smell ; Species ; Sugar ; Terpenes ; Tropical climate ; Tropical diseases ; Vector-borne diseases ; Vectors ; Vectors (Biology) ; Viral diseases</subject><ispartof>PLoS neglected tropical diseases, 2018-02, Vol.12 (2), p.e0006185</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nyasembe VO, Tchouassi DP, Pirk CWW, Sole CL, Torto B (2018) Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl Trop Dis 12(2): e0006185. https://doi.org/10.1371/journal.pntd.0006185</rights><rights>2018 Nyasembe et al 2018 Nyasembe et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nyasembe VO, Tchouassi DP, Pirk CWW, Sole CL, Torto B (2018) Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl Trop Dis 12(2): e0006185. https://doi.org/10.1371/journal.pntd.0006185</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-a844c5fc7289a888da916e157c8340fc9f622696bdd8334556245c0935a9d8323</citedby><orcidid>0000-0002-5080-9903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2014507801/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2014507801?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29462150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Weiss, Brian L.</contributor><creatorcontrib>Nyasembe, Vincent O</creatorcontrib><creatorcontrib>Tchouassi, David P</creatorcontrib><creatorcontrib>Pirk, Christian W W</creatorcontrib><creatorcontrib>Sole, Catherine L</creatorcontrib><creatorcontrib>Torto, Baldwyn</creatorcontrib><title>Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology.</description><subject>Acyclic Monoterpenes</subject><subject>Aedes</subject><subject>Aedes - physiology</subject><subject>Aedes aegypti</subject><subject>Aldehydes</subject><subject>Alkenes</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Anopheles - physiology</subject><subject>Anopheles gambiae</subject><subject>Aquatic insects</subject><subject>Baits</subject><subject>Behavior, Animal - physiology</subject><subject>Benzenoids</subject><subject>Biology and Life Sciences</subject><subject>Coccidioidomycosis</subject><subject>Culicidae</subject><subject>Dengue</subject><subject>Dengue - transmission</subject><subject>Dengue - virology</subject><subject>Dengue fever</subject><subject>Dengue Virus</subject><subject>Deoxyribonucleic acid</subject><subject>Detection</subject><subject>Disease Vectors</subject><subject>Diseases</subject><subject>DNA</subject><subject>DNA, Plant</subject><subject>Electroantennograms</subject><subject>Exploitation</subject><subject>Feeding</subject><subject>Feeding Behavior - psychology</subject><subject>Female</subject><subject>Fishing bait</subject><subject>Flowers & plants</subject><subject>Forensic science</subject><subject>Forensic toxicology</subject><subject>Gas chromatography</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genetic aspects</subject><subject>Health risks</subject><subject>Herbivores</subject><subject>Host plants</subject><subject>Host-Parasite Interactions - physiology</subject><subject>Human diseases</subject><subject>Identification</subject><subject>Kenya</subject><subject>Malaria</subject><subject>Malaria - transmission</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine and Health Sciences</subject><subject>Monoterpenes</subject><subject>Mosquito Vectors - physiology</subject><subject>Mosquitoes</subject><subject>Myrcene</subject><subject>Ocimene</subject><subject>Odor</subject><subject>Odorants</subject><subject>Odors</subject><subject>Odour</subject><subject>Olfaction</subject><subject>Olfactory stimuli</subject><subject>Physical Sciences</subject><subject>Plant Extracts - chemistry</subject><subject>Plant species</subject><subject>Plants - chemistry</subject><subject>Plants - classification</subject><subject>Plants - genetics</subject><subject>Public health</subject><subject>Rift Valley fever</subject><subject>Rift Valley Fever - transmission</subject><subject>Saccharides</subject><subject>Sesquiterpenes</subject><subject>Smell</subject><subject>Species</subject><subject>Sugar</subject><subject>Terpenes</subject><subject>Tropical climate</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><subject>Vectors (Biology)</subject><subject>Viral diseases</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptklGL1DAUhYso7rr6D0QLgvjSMUmTNn0RhkXdhQVf9E0IaZLOZEhzZ5N0Yf-96U53mZElDw233znJvTlF8R6jFa5b_HUHU_DSrfY-6RVCqMGcvSjOcVezirQ1e3m0PyvexLhDiHWM49fFGeloQzBD58XfK4ip3DvpUzlAMD5aFUvpdQlukCpBuK96GY0utUlGJQu-tL5cDwGqFGBvlXTlCPF2sglKbaPJcHlnZmV8W7wapIvm3fK9KP78-P778qq6-fXz-nJ9U6mG0FRJTqlig2oJ7yTnXMsONwazVvGaokF1Q0NI0zW91ryuKWNZxRTKzckuV0h9UXw8-O4dRLEMJgqCMGWo5Qhn4vpAaJA7sQ92lOFegLTioQBhI2RIVjkjamUk5rjVVGtK2qbvFUY1bxDmlBjEs9e35bSpH41Wxqcg3Ynp6R9vt2IDd4LldsiDwZfFIMDtZGISo43KuPwIBqb53qjFmHaUZvTTf-jz3S3URuYGrB8gn6tmU7Fm-a1J5rpMrZ6h8tJmtAq8GWyunwg-Hwm2Rrq0jeCmOQTxFKQHUAWIMZjhaRgYiTmsj7cWc1jFEtYs-3A8yCfRYzrrf3T75RM</recordid><startdate>20180220</startdate><enddate>20180220</enddate><creator>Nyasembe, Vincent O</creator><creator>Tchouassi, David P</creator><creator>Pirk, Christian W W</creator><creator>Sole, Catherine L</creator><creator>Torto, Baldwyn</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5080-9903</orcidid></search><sort><creationdate>20180220</creationdate><title>Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors</title><author>Nyasembe, Vincent O ; Tchouassi, David P ; Pirk, Christian W W ; Sole, Catherine L ; Torto, Baldwyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-a844c5fc7289a888da916e157c8340fc9f622696bdd8334556245c0935a9d8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acyclic Monoterpenes</topic><topic>Aedes</topic><topic>Aedes - physiology</topic><topic>Aedes aegypti</topic><topic>Aldehydes</topic><topic>Alkenes</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Anopheles - physiology</topic><topic>Anopheles gambiae</topic><topic>Aquatic insects</topic><topic>Baits</topic><topic>Behavior, Animal - physiology</topic><topic>Benzenoids</topic><topic>Biology and Life Sciences</topic><topic>Coccidioidomycosis</topic><topic>Culicidae</topic><topic>Dengue</topic><topic>Dengue - transmission</topic><topic>Dengue - virology</topic><topic>Dengue fever</topic><topic>Dengue Virus</topic><topic>Deoxyribonucleic acid</topic><topic>Detection</topic><topic>Disease Vectors</topic><topic>Diseases</topic><topic>DNA</topic><topic>DNA, Plant</topic><topic>Electroantennograms</topic><topic>Exploitation</topic><topic>Feeding</topic><topic>Feeding Behavior - psychology</topic><topic>Female</topic><topic>Fishing bait</topic><topic>Flowers & plants</topic><topic>Forensic science</topic><topic>Forensic toxicology</topic><topic>Gas chromatography</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genetic aspects</topic><topic>Health risks</topic><topic>Herbivores</topic><topic>Host plants</topic><topic>Host-Parasite Interactions - physiology</topic><topic>Human diseases</topic><topic>Identification</topic><topic>Kenya</topic><topic>Malaria</topic><topic>Malaria - transmission</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine and Health Sciences</topic><topic>Monoterpenes</topic><topic>Mosquito Vectors - physiology</topic><topic>Mosquitoes</topic><topic>Myrcene</topic><topic>Ocimene</topic><topic>Odor</topic><topic>Odorants</topic><topic>Odors</topic><topic>Odour</topic><topic>Olfaction</topic><topic>Olfactory stimuli</topic><topic>Physical Sciences</topic><topic>Plant Extracts - chemistry</topic><topic>Plant species</topic><topic>Plants - chemistry</topic><topic>Plants - classification</topic><topic>Plants - genetics</topic><topic>Public health</topic><topic>Rift Valley fever</topic><topic>Rift Valley Fever - transmission</topic><topic>Saccharides</topic><topic>Sesquiterpenes</topic><topic>Smell</topic><topic>Species</topic><topic>Sugar</topic><topic>Terpenes</topic><topic>Tropical climate</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><topic>Vectors (Biology)</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyasembe, Vincent O</creatorcontrib><creatorcontrib>Tchouassi, David P</creatorcontrib><creatorcontrib>Pirk, Christian W W</creatorcontrib><creatorcontrib>Sole, Catherine L</creatorcontrib><creatorcontrib>Torto, Baldwyn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyasembe, Vincent O</au><au>Tchouassi, David P</au><au>Pirk, Christian W W</au><au>Sole, Catherine L</au><au>Torto, Baldwyn</au><au>Weiss, Brian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2018-02-20</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>e0006185</spage><pages>e0006185-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>The global spread of vector-borne diseases remains a worrying public health threat, raising the need for development of new combat strategies for vector control. Knowledge of vector ecology can be exploited in this regard, including plant feeding; a critical resource that mosquitoes of both sexes rely on for survival and other metabolic processes. However, the identity of plant species mosquitoes feed on in nature remains largely unknown. By testing the hypothesis about selectivity in plant feeding, we employed a DNA-based approach targeting trnH-psbA and matK genes and identified host plants of field-collected Afro-tropical mosquito vectors of dengue, Rift Valley fever and malaria being among the most important mosquito-borne diseases in East Africa. These included three plant species for Aedes aegypti (dengue), two for both Aedes mcintoshi and Aedes ochraceus (Rift Valley fever) and five for Anopheles gambiae (malaria). Since plant feeding is mediated by olfactory cues, we further sought to identify specific odor signatures that may modulate host plant location. Using coupled gas chromatography (GC)-electroantennographic detection, GC/mass spectrometry and electroantennogram analyses, we identified a total of 21 antennally-active components variably detected by Ae. aegypti, Ae. mcintoshi and An. gambiae from their respective host plants. Whereas Ae. aegypti predominantly detected benzenoids, Ae. mcintoshi detected mainly aldehydes while An. gambiae detected sesquiterpenes and alkenes. Interestingly, the monoterpenes β-myrcene and (E)-β-ocimene were consistently detected by all the mosquito species and present in all the identified host plants, suggesting that they may serve as signature cues in plant location. This study highlights the utility of molecular approaches in identifying specific vector-plant associations, which can be exploited in maximizing control strategies such as such as attractive toxic sugar bait and odor-bait technology.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29462150</pmid><doi>10.1371/journal.pntd.0006185</doi><orcidid>https://orcid.org/0000-0002-5080-9903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-2735 |
ispartof | PLoS neglected tropical diseases, 2018-02, Vol.12 (2), p.e0006185 |
issn | 1935-2735 1935-2727 1935-2735 |
language | eng |
recordid | cdi_plos_journals_2014507801 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acyclic Monoterpenes Aedes Aedes - physiology Aedes aegypti Aldehydes Alkenes Animal behavior Animals Anopheles - physiology Anopheles gambiae Aquatic insects Baits Behavior, Animal - physiology Benzenoids Biology and Life Sciences Coccidioidomycosis Culicidae Dengue Dengue - transmission Dengue - virology Dengue fever Dengue Virus Deoxyribonucleic acid Detection Disease Vectors Diseases DNA DNA, Plant Electroantennograms Exploitation Feeding Feeding Behavior - psychology Female Fishing bait Flowers & plants Forensic science Forensic toxicology Gas chromatography Genes Genes, Plant - genetics Genetic aspects Health risks Herbivores Host plants Host-Parasite Interactions - physiology Human diseases Identification Kenya Malaria Malaria - transmission Male Mass spectrometry Mass spectroscopy Medicine and Health Sciences Monoterpenes Mosquito Vectors - physiology Mosquitoes Myrcene Ocimene Odor Odorants Odors Odour Olfaction Olfactory stimuli Physical Sciences Plant Extracts - chemistry Plant species Plants - chemistry Plants - classification Plants - genetics Public health Rift Valley fever Rift Valley Fever - transmission Saccharides Sesquiterpenes Smell Species Sugar Terpenes Tropical climate Tropical diseases Vector-borne diseases Vectors Vectors (Biology) Viral diseases |
title | Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%20plant%20forensics%20and%20olfactory-based%20detection%20in%20Afro-tropical%20mosquito%20disease%20vectors&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Nyasembe,%20Vincent%20O&rft.date=2018-02-20&rft.volume=12&rft.issue=2&rft.spage=e0006185&rft.pages=e0006185-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0006185&rft_dat=%3Cgale_plos_%3EA529425079%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c624t-a844c5fc7289a888da916e157c8340fc9f622696bdd8334556245c0935a9d8323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014507801&rft_id=info:pmid/29462150&rft_galeid=A529425079&rfr_iscdi=true |