Loading…

Flexibility evaluation of multiechelon supply chains

Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-03, Vol.13 (3), p.e0194050-e0194050
Main Authors: Almeida, João Flávio de Freitas, Conceição, Samuel Vieira, Pinto, Luiz Ricardo, de Camargo, Ricardo Saraiva, Júnior, Gilberto de Miranda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3
cites cdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3
container_end_page e0194050
container_issue 3
container_start_page e0194050
container_title PloS one
container_volume 13
creator Almeida, João Flávio de Freitas
Conceição, Samuel Vieira
Pinto, Luiz Ricardo
de Camargo, Ricardo Saraiva
Júnior, Gilberto de Miranda
description Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.
doi_str_mv 10.1371/journal.pone.0194050
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2019025161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A532485947</galeid><doaj_id>oai_doaj_org_article_830fc275f2a145538e4c1365fbee931f</doaj_id><sourcerecordid>A532485947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</originalsourceid><addsrcrecordid>eNqNkktr3DAUhU1padK0_6C0A4XSLmaqt-1NIYSmHQgE-toKWb4aa5Atx5JD5t9X03HCuGRRvLAtffcc3auTZa8xWmGa409bPw6dcqved7BCuGSIoyfZKS4pWQqC6NOj75PsRQhbhDgthHienZCSFyzn_DRjlw7ubGWdjbsF3Co3qmh9t_Bm0Y4uWtANuPQfxr53u4VulO3Cy-yZUS7Aq-l9lv26_PLz4tvy6vrr-uL8aqlFSeKyIslb66rWBuWQzocJ4hWmxuS5JkyBrjFVGijT2BCFICeaUF2KktbC4JqeZW8Pur3zQU4NB0lSt4hwLHAi1gei9mor-8G2athJr6z8u-CHjVRDtNqBLCgymuQ8OWHG0yQg2VLBTQVQUmyS1ufJbaxaqDV0cVBuJjrf6WwjN_5W8iLHlPAk8GESGPzNCCHK1gYNzqkO_Hg4NxNUIJbQd_-gj3c3URuVGrCd8clX70XlOaeEFbxkeaJWj1DpqaG1OqXD2LQ-K_g4K0hMhLu4UWMIcv3j-_-z17_n7PsjtgHlYhO8G_eBCnOQHUA9-BAGMA9Dxkjuw30_DbkPt5zCncreHF_QQ9F9mukfp_fzrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019025161</pqid></control><display><type>article</type><title>Flexibility evaluation of multiechelon supply chains</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Almeida, João Flávio de Freitas ; Conceição, Samuel Vieira ; Pinto, Luiz Ricardo ; de Camargo, Ricardo Saraiva ; Júnior, Gilberto de Miranda</creator><contributor>Deng, Yong</contributor><creatorcontrib>Almeida, João Flávio de Freitas ; Conceição, Samuel Vieira ; Pinto, Luiz Ricardo ; de Camargo, Ricardo Saraiva ; Júnior, Gilberto de Miranda ; Deng, Yong</creatorcontrib><description>Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0194050</identifier><identifier>PMID: 29584755</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Demand analysis ; Engineering and Technology ; Flexibility ; Logistics ; Management ; Manufacturing ; Mathematical models ; Mathematical programming ; Parameters ; Physical Sciences ; Procurement ; Research and Analysis Methods ; Robustness (mathematics) ; Social responsibility ; Social Sciences ; Stochasticity ; Suppliers ; Supply chains ; Uncertainty</subject><ispartof>PloS one, 2018-03, Vol.13 (3), p.e0194050-e0194050</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Almeida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Almeida et al 2018 Almeida et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</citedby><cites>FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</cites><orcidid>0000-0002-3884-217X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2019025161/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2019025161?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29584755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Deng, Yong</contributor><creatorcontrib>Almeida, João Flávio de Freitas</creatorcontrib><creatorcontrib>Conceição, Samuel Vieira</creatorcontrib><creatorcontrib>Pinto, Luiz Ricardo</creatorcontrib><creatorcontrib>de Camargo, Ricardo Saraiva</creatorcontrib><creatorcontrib>Júnior, Gilberto de Miranda</creatorcontrib><title>Flexibility evaluation of multiechelon supply chains</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.</description><subject>Demand analysis</subject><subject>Engineering and Technology</subject><subject>Flexibility</subject><subject>Logistics</subject><subject>Management</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Procurement</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Social responsibility</subject><subject>Social Sciences</subject><subject>Stochasticity</subject><subject>Suppliers</subject><subject>Supply chains</subject><subject>Uncertainty</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktr3DAUhU1padK0_6C0A4XSLmaqt-1NIYSmHQgE-toKWb4aa5Atx5JD5t9X03HCuGRRvLAtffcc3auTZa8xWmGa409bPw6dcqved7BCuGSIoyfZKS4pWQqC6NOj75PsRQhbhDgthHienZCSFyzn_DRjlw7ubGWdjbsF3Co3qmh9t_Bm0Y4uWtANuPQfxr53u4VulO3Cy-yZUS7Aq-l9lv26_PLz4tvy6vrr-uL8aqlFSeKyIslb66rWBuWQzocJ4hWmxuS5JkyBrjFVGijT2BCFICeaUF2KktbC4JqeZW8Pur3zQU4NB0lSt4hwLHAi1gei9mor-8G2athJr6z8u-CHjVRDtNqBLCgymuQ8OWHG0yQg2VLBTQVQUmyS1ufJbaxaqDV0cVBuJjrf6WwjN_5W8iLHlPAk8GESGPzNCCHK1gYNzqkO_Hg4NxNUIJbQd_-gj3c3URuVGrCd8clX70XlOaeEFbxkeaJWj1DpqaG1OqXD2LQ-K_g4K0hMhLu4UWMIcv3j-_-z17_n7PsjtgHlYhO8G_eBCnOQHUA9-BAGMA9Dxkjuw30_DbkPt5zCncreHF_QQ9F9mukfp_fzrA</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Almeida, João Flávio de Freitas</creator><creator>Conceição, Samuel Vieira</creator><creator>Pinto, Luiz Ricardo</creator><creator>de Camargo, Ricardo Saraiva</creator><creator>Júnior, Gilberto de Miranda</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3884-217X</orcidid></search><sort><creationdate>20180327</creationdate><title>Flexibility evaluation of multiechelon supply chains</title><author>Almeida, João Flávio de Freitas ; Conceição, Samuel Vieira ; Pinto, Luiz Ricardo ; de Camargo, Ricardo Saraiva ; Júnior, Gilberto de Miranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Demand analysis</topic><topic>Engineering and Technology</topic><topic>Flexibility</topic><topic>Logistics</topic><topic>Management</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Procurement</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Social responsibility</topic><topic>Social Sciences</topic><topic>Stochasticity</topic><topic>Suppliers</topic><topic>Supply chains</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, João Flávio de Freitas</creatorcontrib><creatorcontrib>Conceição, Samuel Vieira</creatorcontrib><creatorcontrib>Pinto, Luiz Ricardo</creatorcontrib><creatorcontrib>de Camargo, Ricardo Saraiva</creatorcontrib><creatorcontrib>Júnior, Gilberto de Miranda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, João Flávio de Freitas</au><au>Conceição, Samuel Vieira</au><au>Pinto, Luiz Ricardo</au><au>de Camargo, Ricardo Saraiva</au><au>Júnior, Gilberto de Miranda</au><au>Deng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexibility evaluation of multiechelon supply chains</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-03-27</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>e0194050</spage><epage>e0194050</epage><pages>e0194050-e0194050</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29584755</pmid><doi>10.1371/journal.pone.0194050</doi><tpages>e0194050</tpages><orcidid>https://orcid.org/0000-0002-3884-217X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-03, Vol.13 (3), p.e0194050-e0194050
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2019025161
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Demand analysis
Engineering and Technology
Flexibility
Logistics
Management
Manufacturing
Mathematical models
Mathematical programming
Parameters
Physical Sciences
Procurement
Research and Analysis Methods
Robustness (mathematics)
Social responsibility
Social Sciences
Stochasticity
Suppliers
Supply chains
Uncertainty
title Flexibility evaluation of multiechelon supply chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexibility%20evaluation%20of%20multiechelon%20supply%20chains&rft.jtitle=PloS%20one&rft.au=Almeida,%20Jo%C3%A3o%20Fl%C3%A1vio%20de%20Freitas&rft.date=2018-03-27&rft.volume=13&rft.issue=3&rft.spage=e0194050&rft.epage=e0194050&rft.pages=e0194050-e0194050&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0194050&rft_dat=%3Cgale_plos_%3EA532485947%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019025161&rft_id=info:pmid/29584755&rft_galeid=A532485947&rfr_iscdi=true