Loading…
Flexibility evaluation of multiechelon supply chains
Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain...
Saved in:
Published in: | PloS one 2018-03, Vol.13 (3), p.e0194050-e0194050 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3 |
container_end_page | e0194050 |
container_issue | 3 |
container_start_page | e0194050 |
container_title | PloS one |
container_volume | 13 |
creator | Almeida, João Flávio de Freitas Conceição, Samuel Vieira Pinto, Luiz Ricardo de Camargo, Ricardo Saraiva Júnior, Gilberto de Miranda |
description | Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution. |
doi_str_mv | 10.1371/journal.pone.0194050 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2019025161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A532485947</galeid><doaj_id>oai_doaj_org_article_830fc275f2a145538e4c1365fbee931f</doaj_id><sourcerecordid>A532485947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</originalsourceid><addsrcrecordid>eNqNkktr3DAUhU1padK0_6C0A4XSLmaqt-1NIYSmHQgE-toKWb4aa5Atx5JD5t9X03HCuGRRvLAtffcc3auTZa8xWmGa409bPw6dcqved7BCuGSIoyfZKS4pWQqC6NOj75PsRQhbhDgthHienZCSFyzn_DRjlw7ubGWdjbsF3Co3qmh9t_Bm0Y4uWtANuPQfxr53u4VulO3Cy-yZUS7Aq-l9lv26_PLz4tvy6vrr-uL8aqlFSeKyIslb66rWBuWQzocJ4hWmxuS5JkyBrjFVGijT2BCFICeaUF2KktbC4JqeZW8Pur3zQU4NB0lSt4hwLHAi1gei9mor-8G2athJr6z8u-CHjVRDtNqBLCgymuQ8OWHG0yQg2VLBTQVQUmyS1ufJbaxaqDV0cVBuJjrf6WwjN_5W8iLHlPAk8GESGPzNCCHK1gYNzqkO_Hg4NxNUIJbQd_-gj3c3URuVGrCd8clX70XlOaeEFbxkeaJWj1DpqaG1OqXD2LQ-K_g4K0hMhLu4UWMIcv3j-_-z17_n7PsjtgHlYhO8G_eBCnOQHUA9-BAGMA9Dxkjuw30_DbkPt5zCncreHF_QQ9F9mukfp_fzrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019025161</pqid></control><display><type>article</type><title>Flexibility evaluation of multiechelon supply chains</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Almeida, João Flávio de Freitas ; Conceição, Samuel Vieira ; Pinto, Luiz Ricardo ; de Camargo, Ricardo Saraiva ; Júnior, Gilberto de Miranda</creator><contributor>Deng, Yong</contributor><creatorcontrib>Almeida, João Flávio de Freitas ; Conceição, Samuel Vieira ; Pinto, Luiz Ricardo ; de Camargo, Ricardo Saraiva ; Júnior, Gilberto de Miranda ; Deng, Yong</creatorcontrib><description>Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0194050</identifier><identifier>PMID: 29584755</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Demand analysis ; Engineering and Technology ; Flexibility ; Logistics ; Management ; Manufacturing ; Mathematical models ; Mathematical programming ; Parameters ; Physical Sciences ; Procurement ; Research and Analysis Methods ; Robustness (mathematics) ; Social responsibility ; Social Sciences ; Stochasticity ; Suppliers ; Supply chains ; Uncertainty</subject><ispartof>PloS one, 2018-03, Vol.13 (3), p.e0194050-e0194050</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Almeida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Almeida et al 2018 Almeida et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</citedby><cites>FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</cites><orcidid>0000-0002-3884-217X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2019025161/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2019025161?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29584755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Deng, Yong</contributor><creatorcontrib>Almeida, João Flávio de Freitas</creatorcontrib><creatorcontrib>Conceição, Samuel Vieira</creatorcontrib><creatorcontrib>Pinto, Luiz Ricardo</creatorcontrib><creatorcontrib>de Camargo, Ricardo Saraiva</creatorcontrib><creatorcontrib>Júnior, Gilberto de Miranda</creatorcontrib><title>Flexibility evaluation of multiechelon supply chains</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.</description><subject>Demand analysis</subject><subject>Engineering and Technology</subject><subject>Flexibility</subject><subject>Logistics</subject><subject>Management</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Procurement</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Social responsibility</subject><subject>Social Sciences</subject><subject>Stochasticity</subject><subject>Suppliers</subject><subject>Supply chains</subject><subject>Uncertainty</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktr3DAUhU1padK0_6C0A4XSLmaqt-1NIYSmHQgE-toKWb4aa5Atx5JD5t9X03HCuGRRvLAtffcc3auTZa8xWmGa409bPw6dcqved7BCuGSIoyfZKS4pWQqC6NOj75PsRQhbhDgthHienZCSFyzn_DRjlw7ubGWdjbsF3Co3qmh9t_Bm0Y4uWtANuPQfxr53u4VulO3Cy-yZUS7Aq-l9lv26_PLz4tvy6vrr-uL8aqlFSeKyIslb66rWBuWQzocJ4hWmxuS5JkyBrjFVGijT2BCFICeaUF2KktbC4JqeZW8Pur3zQU4NB0lSt4hwLHAi1gei9mor-8G2athJr6z8u-CHjVRDtNqBLCgymuQ8OWHG0yQg2VLBTQVQUmyS1ufJbaxaqDV0cVBuJjrf6WwjN_5W8iLHlPAk8GESGPzNCCHK1gYNzqkO_Hg4NxNUIJbQd_-gj3c3URuVGrCd8clX70XlOaeEFbxkeaJWj1DpqaG1OqXD2LQ-K_g4K0hMhLu4UWMIcv3j-_-z17_n7PsjtgHlYhO8G_eBCnOQHUA9-BAGMA9Dxkjuw30_DbkPt5zCncreHF_QQ9F9mukfp_fzrA</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Almeida, João Flávio de Freitas</creator><creator>Conceição, Samuel Vieira</creator><creator>Pinto, Luiz Ricardo</creator><creator>de Camargo, Ricardo Saraiva</creator><creator>Júnior, Gilberto de Miranda</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3884-217X</orcidid></search><sort><creationdate>20180327</creationdate><title>Flexibility evaluation of multiechelon supply chains</title><author>Almeida, João Flávio de Freitas ; Conceição, Samuel Vieira ; Pinto, Luiz Ricardo ; de Camargo, Ricardo Saraiva ; Júnior, Gilberto de Miranda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Demand analysis</topic><topic>Engineering and Technology</topic><topic>Flexibility</topic><topic>Logistics</topic><topic>Management</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Procurement</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Social responsibility</topic><topic>Social Sciences</topic><topic>Stochasticity</topic><topic>Suppliers</topic><topic>Supply chains</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, João Flávio de Freitas</creatorcontrib><creatorcontrib>Conceição, Samuel Vieira</creatorcontrib><creatorcontrib>Pinto, Luiz Ricardo</creatorcontrib><creatorcontrib>de Camargo, Ricardo Saraiva</creatorcontrib><creatorcontrib>Júnior, Gilberto de Miranda</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, João Flávio de Freitas</au><au>Conceição, Samuel Vieira</au><au>Pinto, Luiz Ricardo</au><au>de Camargo, Ricardo Saraiva</au><au>Júnior, Gilberto de Miranda</au><au>Deng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexibility evaluation of multiechelon supply chains</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-03-27</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>e0194050</spage><epage>e0194050</epage><pages>e0194050-e0194050</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiechelon supply chains are complex logistics systems that require flexibility and coordination at a tactical level to cope with environmental uncertainties in an efficient and effective manner. To cope with these challenges, mathematical programming models are developed to evaluate supply chain flexibility. However, under uncertainty, supply chain models become complex and the scope of flexibility analysis is generally reduced. This paper presents a unified approach that can evaluate the flexibility of a four-echelon supply chain via a robust stochastic programming model. The model simultaneously considers the plans of multiple business divisions such as marketing, logistics, manufacturing, and procurement, whose goals are often conflicting. A numerical example with deterministic parameters is presented to introduce the analysis, and then, the model stochastic parameters are considered to evaluate flexibility. The results of the analysis on supply, manufacturing, and distribution flexibility are presented. Tradeoff analysis of demand variability and service levels is also carried out. The proposed approach facilitates the adoption of different management styles, thus improving supply chain resilience. The model can be extended to contexts pertaining to supply chain disruptions; for example, the model can be used to explore operation strategies when subtle events disrupt supply, manufacturing, or distribution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29584755</pmid><doi>10.1371/journal.pone.0194050</doi><tpages>e0194050</tpages><orcidid>https://orcid.org/0000-0002-3884-217X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-03, Vol.13 (3), p.e0194050-e0194050 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2019025161 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Demand analysis Engineering and Technology Flexibility Logistics Management Manufacturing Mathematical models Mathematical programming Parameters Physical Sciences Procurement Research and Analysis Methods Robustness (mathematics) Social responsibility Social Sciences Stochasticity Suppliers Supply chains Uncertainty |
title | Flexibility evaluation of multiechelon supply chains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexibility%20evaluation%20of%20multiechelon%20supply%20chains&rft.jtitle=PloS%20one&rft.au=Almeida,%20Jo%C3%A3o%20Fl%C3%A1vio%20de%20Freitas&rft.date=2018-03-27&rft.volume=13&rft.issue=3&rft.spage=e0194050&rft.epage=e0194050&rft.pages=e0194050-e0194050&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0194050&rft_dat=%3Cgale_plos_%3EA532485947%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-b2620ccbdcf07e4051205b13ff77c24aecd13ace34c1f2a0e72c23c9693d6f1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019025161&rft_id=info:pmid/29584755&rft_galeid=A532485947&rfr_iscdi=true |