Loading…
speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification
Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing rema...
Saved in:
Published in: | PLoS computational biology 2018-03, Vol.14 (3), p.e1006018-e1006018 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3 |
container_end_page | e1006018 |
container_issue | 3 |
container_start_page | e1006018 |
container_title | PLoS computational biology |
container_volume | 14 |
creator | Beirnaert, Charlie Meysman, Pieter Vu, Trung Nghia Hermans, Nina Apers, Sandra Pieters, Luc Covaci, Adrian Laukens, Kris |
description | Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq). |
doi_str_mv | 10.1371/journal.pcbi.1006018 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2025707113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533351900</galeid><doaj_id>oai_doaj_org_article_4351e6e85db0452692eb968b843660be</doaj_id><sourcerecordid>A533351900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</originalsourceid><addsrcrecordid>eNqVUl1v0zAUjRCIjcI_QGCJF3ho8XdsHpCq8VVpDGnAs-XYTuotjVM7ofDvcWg3rYgXZFm-uj7nXPvoFMVTBBeIlOj1VRhjp9tFbyq_QBByiMS94hQxRuYlYeL-nfqkeJTSFYS5lPxhcYIllZQJcVqo1Du9BXgB34AlMGHTt25wYBfidd2GHahDBGvfrOfDOoaxWffjANA7cPH5EmSmGaIGfQzGpeS7BujOgu2ou8HX3ujBh-5x8aDWbXJPDues-P7h_bezT_PzLx9XZ8vzuWFSiLnEnCPsDK0hNoQbCymspKgp1qS0pWRQcmtpZVldc26Yw5Zig0opNZYEOTIrnu91-zYkdfAmKQwxK2GJEMmI1R5hg75SffQbHX-poL360wixUToO3rROUcKQ404wW0HKMJfYVZKLSlDCOaymaXKvlXauH6sjtWyHVYf-tZ-2Sk4hIiBkkOHMfXt46VhtnDWuyya2xxJHN51fqyb8UExQSQjNAi8PAjFsR5cGtfHJuLbVnQvj9GcESQkRnma9-Av6b2cWe1Sj8-d9V4c81-Rl3cab0Lna5_6SEZJ9kTlFs-LVESFjBvdzaPSYklp9vfwP7MUxlu6xJoaUoqtvXUFQTaG_eb6aQq8Ooc-0Z3cdvSXdpJz8Bo9e_Lw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025707113</pqid></control><display><type>article</type><title>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Beirnaert, Charlie ; Meysman, Pieter ; Vu, Trung Nghia ; Hermans, Nina ; Apers, Sandra ; Pieters, Luc ; Covaci, Adrian ; Laukens, Kris</creator><contributor>Schneidman, Dina</contributor><creatorcontrib>Beirnaert, Charlie ; Meysman, Pieter ; Vu, Trung Nghia ; Hermans, Nina ; Apers, Sandra ; Pieters, Luc ; Covaci, Adrian ; Laukens, Kris ; Schneidman, Dina</creatorcontrib><description>Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006018</identifier><identifier>PMID: 29494588</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analytical chemistry ; Automation ; Bioinformatics ; Bioinformatik (beräkningsbiologi) (tillämpningar under 10610) ; Biology and Life Sciences ; Biomarkers ; Case studies ; Computer and Information Sciences ; Computer science ; Data analysis ; Data processing ; Data- och informationsvetenskap (Datateknik) ; Datasets ; Funding ; Informatics ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Mathematics ; Metabolism ; Metabolites ; Metabolomics ; Methods ; Natural products ; Naturvetenskap ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Pharmaceutical sciences ; Physical Sciences ; Quantitation ; Research and analysis methods ; Scientific imaging ; Software ; Spectra ; Statistical analysis ; Statistical methods ; Supervision ; Technology application ; Wavelet analysis ; Wavelet transforms ; Workflow ; Workflow software</subject><ispartof>PLoS computational biology, 2018-03, Vol.14 (3), p.e1006018-e1006018</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Beirnaert C, Meysman P, Vu TN, Hermans N, Apers S, Pieters L, et al. (2018) speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. PLoS Comput Biol 14(3): e1006018. https://doi.org/10.1371/journal.pcbi.1006018</rights><rights>2018 Beirnaert et al 2018 Beirnaert et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Beirnaert C, Meysman P, Vu TN, Hermans N, Apers S, Pieters L, et al. (2018) speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. PLoS Comput Biol 14(3): e1006018. https://doi.org/10.1371/journal.pcbi.1006018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</citedby><cites>FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</cites><orcidid>0000-0001-5903-633X ; 0000-0003-3946-7313 ; 0000-0002-8217-2564 ; 0000-0003-3007-2569 ; 0000-0001-7945-5750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2025707113/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2025707113?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29494588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:138005052$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Schneidman, Dina</contributor><creatorcontrib>Beirnaert, Charlie</creatorcontrib><creatorcontrib>Meysman, Pieter</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><creatorcontrib>Hermans, Nina</creatorcontrib><creatorcontrib>Apers, Sandra</creatorcontrib><creatorcontrib>Pieters, Luc</creatorcontrib><creatorcontrib>Covaci, Adrian</creatorcontrib><creatorcontrib>Laukens, Kris</creatorcontrib><title>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).</description><subject>Analytical chemistry</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Bioinformatik (beräkningsbiologi) (tillämpningar under 10610)</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Case studies</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Data- och informationsvetenskap (Datateknik)</subject><subject>Datasets</subject><subject>Funding</subject><subject>Informatics</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematics</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Methods</subject><subject>Natural products</subject><subject>Naturvetenskap</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Pharmaceutical sciences</subject><subject>Physical Sciences</subject><subject>Quantitation</subject><subject>Research and analysis methods</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Spectra</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Supervision</subject><subject>Technology application</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><subject>Workflow</subject><subject>Workflow software</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVUl1v0zAUjRCIjcI_QGCJF3ho8XdsHpCq8VVpDGnAs-XYTuotjVM7ofDvcWg3rYgXZFm-uj7nXPvoFMVTBBeIlOj1VRhjp9tFbyq_QBByiMS94hQxRuYlYeL-nfqkeJTSFYS5lPxhcYIllZQJcVqo1Du9BXgB34AlMGHTt25wYBfidd2GHahDBGvfrOfDOoaxWffjANA7cPH5EmSmGaIGfQzGpeS7BujOgu2ou8HX3ujBh-5x8aDWbXJPDues-P7h_bezT_PzLx9XZ8vzuWFSiLnEnCPsDK0hNoQbCymspKgp1qS0pWRQcmtpZVldc26Yw5Zig0opNZYEOTIrnu91-zYkdfAmKQwxK2GJEMmI1R5hg75SffQbHX-poL360wixUToO3rROUcKQ404wW0HKMJfYVZKLSlDCOaymaXKvlXauH6sjtWyHVYf-tZ-2Sk4hIiBkkOHMfXt46VhtnDWuyya2xxJHN51fqyb8UExQSQjNAi8PAjFsR5cGtfHJuLbVnQvj9GcESQkRnma9-Av6b2cWe1Sj8-d9V4c81-Rl3cab0Lna5_6SEZJ9kTlFs-LVESFjBvdzaPSYklp9vfwP7MUxlu6xJoaUoqtvXUFQTaG_eb6aQq8Ooc-0Z3cdvSXdpJz8Bo9e_Lw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Beirnaert, Charlie</creator><creator>Meysman, Pieter</creator><creator>Vu, Trung Nghia</creator><creator>Hermans, Nina</creator><creator>Apers, Sandra</creator><creator>Pieters, Luc</creator><creator>Covaci, Adrian</creator><creator>Laukens, Kris</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5903-633X</orcidid><orcidid>https://orcid.org/0000-0003-3946-7313</orcidid><orcidid>https://orcid.org/0000-0002-8217-2564</orcidid><orcidid>https://orcid.org/0000-0003-3007-2569</orcidid><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid></search><sort><creationdate>20180301</creationdate><title>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</title><author>Beirnaert, Charlie ; Meysman, Pieter ; Vu, Trung Nghia ; Hermans, Nina ; Apers, Sandra ; Pieters, Luc ; Covaci, Adrian ; Laukens, Kris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Bioinformatik (beräkningsbiologi) (tillämpningar under 10610)</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Case studies</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Data- och informationsvetenskap (Datateknik)</topic><topic>Datasets</topic><topic>Funding</topic><topic>Informatics</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematics</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Methods</topic><topic>Natural products</topic><topic>Naturvetenskap</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Pharmaceutical sciences</topic><topic>Physical Sciences</topic><topic>Quantitation</topic><topic>Research and analysis methods</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Spectra</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Supervision</topic><topic>Technology application</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><topic>Workflow</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beirnaert, Charlie</creatorcontrib><creatorcontrib>Meysman, Pieter</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><creatorcontrib>Hermans, Nina</creatorcontrib><creatorcontrib>Apers, Sandra</creatorcontrib><creatorcontrib>Pieters, Luc</creatorcontrib><creatorcontrib>Covaci, Adrian</creatorcontrib><creatorcontrib>Laukens, Kris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beirnaert, Charlie</au><au>Meysman, Pieter</au><au>Vu, Trung Nghia</au><au>Hermans, Nina</au><au>Apers, Sandra</au><au>Pieters, Luc</au><au>Covaci, Adrian</au><au>Laukens, Kris</au><au>Schneidman, Dina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><spage>e1006018</spage><epage>e1006018</epage><pages>e1006018-e1006018</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29494588</pmid><doi>10.1371/journal.pcbi.1006018</doi><orcidid>https://orcid.org/0000-0001-5903-633X</orcidid><orcidid>https://orcid.org/0000-0003-3946-7313</orcidid><orcidid>https://orcid.org/0000-0002-8217-2564</orcidid><orcidid>https://orcid.org/0000-0003-3007-2569</orcidid><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2018-03, Vol.14 (3), p.e1006018-e1006018 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2025707113 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analytical chemistry Automation Bioinformatics Bioinformatik (beräkningsbiologi) (tillämpningar under 10610) Biology and Life Sciences Biomarkers Case studies Computer and Information Sciences Computer science Data analysis Data processing Data- och informationsvetenskap (Datateknik) Datasets Funding Informatics Liquid chromatography Mass spectrometry Mass spectroscopy Mathematics Metabolism Metabolites Metabolomics Methods Natural products Naturvetenskap NMR Nuclear magnetic resonance Nuclear magnetic resonance spectroscopy Pharmaceutical sciences Physical Sciences Quantitation Research and analysis methods Scientific imaging Software Spectra Statistical analysis Statistical methods Supervision Technology application Wavelet analysis Wavelet transforms Workflow Workflow software |
title | speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=speaq%202.0:%20A%20complete%20workflow%20for%20high-throughput%201D%20NMR%20spectra%20processing%20and%20quantification&rft.jtitle=PLoS%20computational%20biology&rft.au=Beirnaert,%20Charlie&rft.date=2018-03-01&rft.volume=14&rft.issue=3&rft.spage=e1006018&rft.epage=e1006018&rft.pages=e1006018-e1006018&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006018&rft_dat=%3Cgale_plos_%3EA533351900%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025707113&rft_id=info:pmid/29494588&rft_galeid=A533351900&rfr_iscdi=true |