Loading…

speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification

Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing rema...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2018-03, Vol.14 (3), p.e1006018-e1006018
Main Authors: Beirnaert, Charlie, Meysman, Pieter, Vu, Trung Nghia, Hermans, Nina, Apers, Sandra, Pieters, Luc, Covaci, Adrian, Laukens, Kris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3
cites cdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3
container_end_page e1006018
container_issue 3
container_start_page e1006018
container_title PLoS computational biology
container_volume 14
creator Beirnaert, Charlie
Meysman, Pieter
Vu, Trung Nghia
Hermans, Nina
Apers, Sandra
Pieters, Luc
Covaci, Adrian
Laukens, Kris
description Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).
doi_str_mv 10.1371/journal.pcbi.1006018
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2025707113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533351900</galeid><doaj_id>oai_doaj_org_article_4351e6e85db0452692eb968b843660be</doaj_id><sourcerecordid>A533351900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</originalsourceid><addsrcrecordid>eNqVUl1v0zAUjRCIjcI_QGCJF3ho8XdsHpCq8VVpDGnAs-XYTuotjVM7ofDvcWg3rYgXZFm-uj7nXPvoFMVTBBeIlOj1VRhjp9tFbyq_QBByiMS94hQxRuYlYeL-nfqkeJTSFYS5lPxhcYIllZQJcVqo1Du9BXgB34AlMGHTt25wYBfidd2GHahDBGvfrOfDOoaxWffjANA7cPH5EmSmGaIGfQzGpeS7BujOgu2ou8HX3ujBh-5x8aDWbXJPDues-P7h_bezT_PzLx9XZ8vzuWFSiLnEnCPsDK0hNoQbCymspKgp1qS0pWRQcmtpZVldc26Yw5Zig0opNZYEOTIrnu91-zYkdfAmKQwxK2GJEMmI1R5hg75SffQbHX-poL360wixUToO3rROUcKQ404wW0HKMJfYVZKLSlDCOaymaXKvlXauH6sjtWyHVYf-tZ-2Sk4hIiBkkOHMfXt46VhtnDWuyya2xxJHN51fqyb8UExQSQjNAi8PAjFsR5cGtfHJuLbVnQvj9GcESQkRnma9-Av6b2cWe1Sj8-d9V4c81-Rl3cab0Lna5_6SEZJ9kTlFs-LVESFjBvdzaPSYklp9vfwP7MUxlu6xJoaUoqtvXUFQTaG_eb6aQq8Ooc-0Z3cdvSXdpJz8Bo9e_Lw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025707113</pqid></control><display><type>article</type><title>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Beirnaert, Charlie ; Meysman, Pieter ; Vu, Trung Nghia ; Hermans, Nina ; Apers, Sandra ; Pieters, Luc ; Covaci, Adrian ; Laukens, Kris</creator><contributor>Schneidman, Dina</contributor><creatorcontrib>Beirnaert, Charlie ; Meysman, Pieter ; Vu, Trung Nghia ; Hermans, Nina ; Apers, Sandra ; Pieters, Luc ; Covaci, Adrian ; Laukens, Kris ; Schneidman, Dina</creatorcontrib><description>Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006018</identifier><identifier>PMID: 29494588</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analytical chemistry ; Automation ; Bioinformatics ; Bioinformatik (beräkningsbiologi) (tillämpningar under 10610) ; Biology and Life Sciences ; Biomarkers ; Case studies ; Computer and Information Sciences ; Computer science ; Data analysis ; Data processing ; Data- och informationsvetenskap (Datateknik) ; Datasets ; Funding ; Informatics ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Mathematics ; Metabolism ; Metabolites ; Metabolomics ; Methods ; Natural products ; Naturvetenskap ; NMR ; Nuclear magnetic resonance ; Nuclear magnetic resonance spectroscopy ; Pharmaceutical sciences ; Physical Sciences ; Quantitation ; Research and analysis methods ; Scientific imaging ; Software ; Spectra ; Statistical analysis ; Statistical methods ; Supervision ; Technology application ; Wavelet analysis ; Wavelet transforms ; Workflow ; Workflow software</subject><ispartof>PLoS computational biology, 2018-03, Vol.14 (3), p.e1006018-e1006018</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Beirnaert C, Meysman P, Vu TN, Hermans N, Apers S, Pieters L, et al. (2018) speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. PLoS Comput Biol 14(3): e1006018. https://doi.org/10.1371/journal.pcbi.1006018</rights><rights>2018 Beirnaert et al 2018 Beirnaert et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Beirnaert C, Meysman P, Vu TN, Hermans N, Apers S, Pieters L, et al. (2018) speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. PLoS Comput Biol 14(3): e1006018. https://doi.org/10.1371/journal.pcbi.1006018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</citedby><cites>FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</cites><orcidid>0000-0001-5903-633X ; 0000-0003-3946-7313 ; 0000-0002-8217-2564 ; 0000-0003-3007-2569 ; 0000-0001-7945-5750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2025707113/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2025707113?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29494588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:138005052$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Schneidman, Dina</contributor><creatorcontrib>Beirnaert, Charlie</creatorcontrib><creatorcontrib>Meysman, Pieter</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><creatorcontrib>Hermans, Nina</creatorcontrib><creatorcontrib>Apers, Sandra</creatorcontrib><creatorcontrib>Pieters, Luc</creatorcontrib><creatorcontrib>Covaci, Adrian</creatorcontrib><creatorcontrib>Laukens, Kris</creatorcontrib><title>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).</description><subject>Analytical chemistry</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>Bioinformatik (beräkningsbiologi) (tillämpningar under 10610)</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Case studies</subject><subject>Computer and Information Sciences</subject><subject>Computer science</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Data- och informationsvetenskap (Datateknik)</subject><subject>Datasets</subject><subject>Funding</subject><subject>Informatics</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematics</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Methods</subject><subject>Natural products</subject><subject>Naturvetenskap</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear magnetic resonance spectroscopy</subject><subject>Pharmaceutical sciences</subject><subject>Physical Sciences</subject><subject>Quantitation</subject><subject>Research and analysis methods</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Spectra</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Supervision</subject><subject>Technology application</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><subject>Workflow</subject><subject>Workflow software</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVUl1v0zAUjRCIjcI_QGCJF3ho8XdsHpCq8VVpDGnAs-XYTuotjVM7ofDvcWg3rYgXZFm-uj7nXPvoFMVTBBeIlOj1VRhjp9tFbyq_QBByiMS94hQxRuYlYeL-nfqkeJTSFYS5lPxhcYIllZQJcVqo1Du9BXgB34AlMGHTt25wYBfidd2GHahDBGvfrOfDOoaxWffjANA7cPH5EmSmGaIGfQzGpeS7BujOgu2ou8HX3ujBh-5x8aDWbXJPDues-P7h_bezT_PzLx9XZ8vzuWFSiLnEnCPsDK0hNoQbCymspKgp1qS0pWRQcmtpZVldc26Yw5Zig0opNZYEOTIrnu91-zYkdfAmKQwxK2GJEMmI1R5hg75SffQbHX-poL360wixUToO3rROUcKQ404wW0HKMJfYVZKLSlDCOaymaXKvlXauH6sjtWyHVYf-tZ-2Sk4hIiBkkOHMfXt46VhtnDWuyya2xxJHN51fqyb8UExQSQjNAi8PAjFsR5cGtfHJuLbVnQvj9GcESQkRnma9-Av6b2cWe1Sj8-d9V4c81-Rl3cab0Lna5_6SEZJ9kTlFs-LVESFjBvdzaPSYklp9vfwP7MUxlu6xJoaUoqtvXUFQTaG_eb6aQq8Ooc-0Z3cdvSXdpJz8Bo9e_Lw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Beirnaert, Charlie</creator><creator>Meysman, Pieter</creator><creator>Vu, Trung Nghia</creator><creator>Hermans, Nina</creator><creator>Apers, Sandra</creator><creator>Pieters, Luc</creator><creator>Covaci, Adrian</creator><creator>Laukens, Kris</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5903-633X</orcidid><orcidid>https://orcid.org/0000-0003-3946-7313</orcidid><orcidid>https://orcid.org/0000-0002-8217-2564</orcidid><orcidid>https://orcid.org/0000-0003-3007-2569</orcidid><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid></search><sort><creationdate>20180301</creationdate><title>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</title><author>Beirnaert, Charlie ; Meysman, Pieter ; Vu, Trung Nghia ; Hermans, Nina ; Apers, Sandra ; Pieters, Luc ; Covaci, Adrian ; Laukens, Kris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>Bioinformatik (beräkningsbiologi) (tillämpningar under 10610)</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Case studies</topic><topic>Computer and Information Sciences</topic><topic>Computer science</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Data- och informationsvetenskap (Datateknik)</topic><topic>Datasets</topic><topic>Funding</topic><topic>Informatics</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematics</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Methods</topic><topic>Natural products</topic><topic>Naturvetenskap</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear magnetic resonance spectroscopy</topic><topic>Pharmaceutical sciences</topic><topic>Physical Sciences</topic><topic>Quantitation</topic><topic>Research and analysis methods</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Spectra</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Supervision</topic><topic>Technology application</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><topic>Workflow</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beirnaert, Charlie</creatorcontrib><creatorcontrib>Meysman, Pieter</creatorcontrib><creatorcontrib>Vu, Trung Nghia</creatorcontrib><creatorcontrib>Hermans, Nina</creatorcontrib><creatorcontrib>Apers, Sandra</creatorcontrib><creatorcontrib>Pieters, Luc</creatorcontrib><creatorcontrib>Covaci, Adrian</creatorcontrib><creatorcontrib>Laukens, Kris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beirnaert, Charlie</au><au>Meysman, Pieter</au><au>Vu, Trung Nghia</au><au>Hermans, Nina</au><au>Apers, Sandra</au><au>Pieters, Luc</au><au>Covaci, Adrian</au><au>Laukens, Kris</au><au>Schneidman, Dina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><spage>e1006018</spage><epage>e1006018</epage><pages>e1006018-e1006018</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29494588</pmid><doi>10.1371/journal.pcbi.1006018</doi><orcidid>https://orcid.org/0000-0001-5903-633X</orcidid><orcidid>https://orcid.org/0000-0003-3946-7313</orcidid><orcidid>https://orcid.org/0000-0002-8217-2564</orcidid><orcidid>https://orcid.org/0000-0003-3007-2569</orcidid><orcidid>https://orcid.org/0000-0001-7945-5750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-03, Vol.14 (3), p.e1006018-e1006018
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2025707113
source Publicly Available Content Database; PubMed Central
subjects Analytical chemistry
Automation
Bioinformatics
Bioinformatik (beräkningsbiologi) (tillämpningar under 10610)
Biology and Life Sciences
Biomarkers
Case studies
Computer and Information Sciences
Computer science
Data analysis
Data processing
Data- och informationsvetenskap (Datateknik)
Datasets
Funding
Informatics
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Mathematics
Metabolism
Metabolites
Metabolomics
Methods
Natural products
Naturvetenskap
NMR
Nuclear magnetic resonance
Nuclear magnetic resonance spectroscopy
Pharmaceutical sciences
Physical Sciences
Quantitation
Research and analysis methods
Scientific imaging
Software
Spectra
Statistical analysis
Statistical methods
Supervision
Technology application
Wavelet analysis
Wavelet transforms
Workflow
Workflow software
title speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=speaq%202.0:%20A%20complete%20workflow%20for%20high-throughput%201D%20NMR%20spectra%20processing%20and%20quantification&rft.jtitle=PLoS%20computational%20biology&rft.au=Beirnaert,%20Charlie&rft.date=2018-03-01&rft.volume=14&rft.issue=3&rft.spage=e1006018&rft.epage=e1006018&rft.pages=e1006018-e1006018&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006018&rft_dat=%3Cgale_plos_%3EA533351900%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5988-926612ec4f02c36cd040b98f42a37d795096dd4bd5ff66c5e2d42c1799a2931e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025707113&rft_id=info:pmid/29494588&rft_galeid=A533351900&rfr_iscdi=true