Loading…

Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units

In the context of an ageing population, understanding the transmission of infectious diseases such as scabies through well-connected sub-units of the population, such as residential care homes, is particularly important for the design of efficient interventions to mitigate against the effects of tho...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2018-03, Vol.14 (3), p.e1006046-e1006046
Main Authors: Kinyanjui, Timothy, Middleton, Jo, Güttel, Stefan, Cassell, Jackie, Ross, Joshua, House, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c661t-cf5ec18a1bac3669c8ed976ae62707875cab2cb87594335cbfefdffbad95127f3
cites cdi_FETCH-LOGICAL-c661t-cf5ec18a1bac3669c8ed976ae62707875cab2cb87594335cbfefdffbad95127f3
container_end_page e1006046
container_issue 3
container_start_page e1006046
container_title PLoS computational biology
container_volume 14
creator Kinyanjui, Timothy
Middleton, Jo
Güttel, Stefan
Cassell, Jackie
Ross, Joshua
House, Thomas
description In the context of an ageing population, understanding the transmission of infectious diseases such as scabies through well-connected sub-units of the population, such as residential care homes, is particularly important for the design of efficient interventions to mitigate against the effects of those diseases. Here, we present a modelling methodology based on the efficient solution of a large-scale system of linear differential equations that allows statistical calibration of individual-based random models to real data on scabies in residential care homes. In particular, we review and benchmark different numerical methods for the integration of the differential equation system, and then select the most appropriate of these methods to perform inference using Markov chain Monte Carlo. We test the goodness-of-fit of this model using posterior predictive intervals and propagate forward the resulting parameter uncertainty in a Bayesian framework to consider the economic cost of delayed interventions against scabies, quantifying the benefits of prompt action in the event of detection. We also revisit the previous methodology used to assess the safety of treatments in small population sub-units-in this context ivermectin-and demonstrate that even a very slight relaxation of the implicit assumption of homogeneous death rates significantly increases the plausibility of the hypothesis that ivermectin does not cause excess mortality based upon the data of Barkwell and Shields.
doi_str_mv 10.1371/journal.pcbi.1006046
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2025710538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533351931</galeid><doaj_id>oai_doaj_org_article_313d43acb42b47f0b77f6782ff26b1ef</doaj_id><sourcerecordid>A533351931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-cf5ec18a1bac3669c8ed976ae62707875cab2cb87594335cbfefdffbad95127f3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEomXhHyCIxAUksthxbCcckKqKj5UKSBTOlj_GW6-y9tZOCvx7HDatuqgX5IPH9jMznnemKJ5itMSE4zebMEYv--VOK7fECDHUsHvFMaaUVJzQ9v4t-6h4lNIGoWx27GFxVHeUd4jw4-LyXEvlIJXOlxGSM-AHJ_tSywjlRdhCelt-Dgb63vn160xZiOA1lNKbfBogXk0ewafShlj-zGClg_egBzDlLuzGXk7PZRpVNXo3pMfFAyv7BE_mfVH8-PD---mn6uzrx9XpyVmlGcNDpS0FjVuJldSEsU63YDrOJLCaI95ymv9da5WNriGEamXBGmuVNB3FNbdkUTzfx931IYlZrSRqVFOOESVtJlZ7wgS5EbvotjL-FkE68fcixLWQcXC6B0EwMQ2RWjW1arhFinPLeFtbWzOFYcr2bs42qi0YnUWJsj8Ievji3YVYhyuRO9JyRnKAl3OAGC5HSIPYuqSznNJDGKd_4w41iDZdRl_8g95d3UytZS4gNy7kvHoKKk4oyZLhLle1KJZ3UHkZ2LrcSLAu3x84vDpwyMwAv4a1HFMSq_Nv_8F-OWSbPatjSCmCvdEOIzEN_HWRYhp4MQ98dnt2W_cbp-sJJ38AoUv-FQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025710538</pqid></control><display><type>article</type><title>Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kinyanjui, Timothy ; Middleton, Jo ; Güttel, Stefan ; Cassell, Jackie ; Ross, Joshua ; House, Thomas</creator><contributor>Alizon, Samuel</contributor><creatorcontrib>Kinyanjui, Timothy ; Middleton, Jo ; Güttel, Stefan ; Cassell, Jackie ; Ross, Joshua ; House, Thomas ; Alizon, Samuel</creatorcontrib><description>In the context of an ageing population, understanding the transmission of infectious diseases such as scabies through well-connected sub-units of the population, such as residential care homes, is particularly important for the design of efficient interventions to mitigate against the effects of those diseases. Here, we present a modelling methodology based on the efficient solution of a large-scale system of linear differential equations that allows statistical calibration of individual-based random models to real data on scabies in residential care homes. In particular, we review and benchmark different numerical methods for the integration of the differential equation system, and then select the most appropriate of these methods to perform inference using Markov chain Monte Carlo. We test the goodness-of-fit of this model using posterior predictive intervals and propagate forward the resulting parameter uncertainty in a Bayesian framework to consider the economic cost of delayed interventions against scabies, quantifying the benefits of prompt action in the event of detection. We also revisit the previous methodology used to assess the safety of treatments in small population sub-units-in this context ivermectin-and demonstrate that even a very slight relaxation of the implicit assumption of homogeneous death rates significantly increases the plausibility of the hypothesis that ivermectin does not cause excess mortality based upon the data of Barkwell and Shields.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006046</identifier><identifier>PMID: 29579037</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Approximation ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Calibration ; Communicable Disease Control - methods ; Communicable Disease Control - statistics &amp; numerical data ; Communicable Diseases - transmission ; Computational mathematics ; Computer simulation ; Councils ; Cross infection ; Differential equations ; Disease ; Goodness of fit ; Health aspects ; Households ; Houses ; Humans ; Infectious diseases ; Inference ; Ivermectin ; Ivermectin - therapeutic use ; Markov analysis ; Markov Chains ; Mathematical models ; Medicine and Health Sciences ; Methods ; Monte Carlo Method ; Monte Carlo simulation ; Numerical analysis ; Numerical methods ; Nursing homes ; Parameter uncertainty ; Physical Sciences ; Population ; Population (statistical) ; Primary care ; Public health ; Research and Analysis Methods ; Residential Facilities ; Risk factors ; Scabies ; Scabies - epidemiology ; Scabies - parasitology ; Scabies - prevention &amp; control ; Social Sciences ; Software ; Statistical analysis ; Stochastic models ; Supervision</subject><ispartof>PLoS computational biology, 2018-03, Vol.14 (3), p.e1006046-e1006046</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kinyanjui T, Middleton J, Güttel S, Cassell J, Ross J, House T (2018) Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units. PLoS Comput Biol 14(3): e1006046. https://doi.org/10.1371/journal.pcbi.1006046</rights><rights>2018 Kinyanjui et al 2018 Kinyanjui et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kinyanjui T, Middleton J, Güttel S, Cassell J, Ross J, House T (2018) Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units. PLoS Comput Biol 14(3): e1006046. https://doi.org/10.1371/journal.pcbi.1006046</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-cf5ec18a1bac3669c8ed976ae62707875cab2cb87594335cbfefdffbad95127f3</citedby><cites>FETCH-LOGICAL-c661t-cf5ec18a1bac3669c8ed976ae62707875cab2cb87594335cbfefdffbad95127f3</cites><orcidid>0000-0001-5461-4946 ; 0000-0001-5835-8062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2025710538/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2025710538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29579037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alizon, Samuel</contributor><creatorcontrib>Kinyanjui, Timothy</creatorcontrib><creatorcontrib>Middleton, Jo</creatorcontrib><creatorcontrib>Güttel, Stefan</creatorcontrib><creatorcontrib>Cassell, Jackie</creatorcontrib><creatorcontrib>Ross, Joshua</creatorcontrib><creatorcontrib>House, Thomas</creatorcontrib><title>Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In the context of an ageing population, understanding the transmission of infectious diseases such as scabies through well-connected sub-units of the population, such as residential care homes, is particularly important for the design of efficient interventions to mitigate against the effects of those diseases. Here, we present a modelling methodology based on the efficient solution of a large-scale system of linear differential equations that allows statistical calibration of individual-based random models to real data on scabies in residential care homes. In particular, we review and benchmark different numerical methods for the integration of the differential equation system, and then select the most appropriate of these methods to perform inference using Markov chain Monte Carlo. We test the goodness-of-fit of this model using posterior predictive intervals and propagate forward the resulting parameter uncertainty in a Bayesian framework to consider the economic cost of delayed interventions against scabies, quantifying the benefits of prompt action in the event of detection. We also revisit the previous methodology used to assess the safety of treatments in small population sub-units-in this context ivermectin-and demonstrate that even a very slight relaxation of the implicit assumption of homogeneous death rates significantly increases the plausibility of the hypothesis that ivermectin does not cause excess mortality based upon the data of Barkwell and Shields.</description><subject>Approximation</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Calibration</subject><subject>Communicable Disease Control - methods</subject><subject>Communicable Disease Control - statistics &amp; numerical data</subject><subject>Communicable Diseases - transmission</subject><subject>Computational mathematics</subject><subject>Computer simulation</subject><subject>Councils</subject><subject>Cross infection</subject><subject>Differential equations</subject><subject>Disease</subject><subject>Goodness of fit</subject><subject>Health aspects</subject><subject>Households</subject><subject>Houses</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Inference</subject><subject>Ivermectin</subject><subject>Ivermectin - therapeutic use</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Nursing homes</subject><subject>Parameter uncertainty</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Primary care</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Residential Facilities</subject><subject>Risk factors</subject><subject>Scabies</subject><subject>Scabies - epidemiology</subject><subject>Scabies - parasitology</subject><subject>Scabies - prevention &amp; control</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><subject>Supervision</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEomXhHyCIxAUksthxbCcckKqKj5UKSBTOlj_GW6-y9tZOCvx7HDatuqgX5IPH9jMznnemKJ5itMSE4zebMEYv--VOK7fECDHUsHvFMaaUVJzQ9v4t-6h4lNIGoWx27GFxVHeUd4jw4-LyXEvlIJXOlxGSM-AHJ_tSywjlRdhCelt-Dgb63vn160xZiOA1lNKbfBogXk0ewafShlj-zGClg_egBzDlLuzGXk7PZRpVNXo3pMfFAyv7BE_mfVH8-PD---mn6uzrx9XpyVmlGcNDpS0FjVuJldSEsU63YDrOJLCaI95ymv9da5WNriGEamXBGmuVNB3FNbdkUTzfx931IYlZrSRqVFOOESVtJlZ7wgS5EbvotjL-FkE68fcixLWQcXC6B0EwMQ2RWjW1arhFinPLeFtbWzOFYcr2bs42qi0YnUWJsj8Ievji3YVYhyuRO9JyRnKAl3OAGC5HSIPYuqSznNJDGKd_4w41iDZdRl_8g95d3UytZS4gNy7kvHoKKk4oyZLhLle1KJZ3UHkZ2LrcSLAu3x84vDpwyMwAv4a1HFMSq_Nv_8F-OWSbPatjSCmCvdEOIzEN_HWRYhp4MQ98dnt2W_cbp-sJJ38AoUv-FQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Kinyanjui, Timothy</creator><creator>Middleton, Jo</creator><creator>Güttel, Stefan</creator><creator>Cassell, Jackie</creator><creator>Ross, Joshua</creator><creator>House, Thomas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5461-4946</orcidid><orcidid>https://orcid.org/0000-0001-5835-8062</orcidid></search><sort><creationdate>20180301</creationdate><title>Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units</title><author>Kinyanjui, Timothy ; Middleton, Jo ; Güttel, Stefan ; Cassell, Jackie ; Ross, Joshua ; House, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-cf5ec18a1bac3669c8ed976ae62707875cab2cb87594335cbfefdffbad95127f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Calibration</topic><topic>Communicable Disease Control - methods</topic><topic>Communicable Disease Control - statistics &amp; numerical data</topic><topic>Communicable Diseases - transmission</topic><topic>Computational mathematics</topic><topic>Computer simulation</topic><topic>Councils</topic><topic>Cross infection</topic><topic>Differential equations</topic><topic>Disease</topic><topic>Goodness of fit</topic><topic>Health aspects</topic><topic>Households</topic><topic>Houses</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Inference</topic><topic>Ivermectin</topic><topic>Ivermectin - therapeutic use</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Nursing homes</topic><topic>Parameter uncertainty</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Primary care</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Residential Facilities</topic><topic>Risk factors</topic><topic>Scabies</topic><topic>Scabies - epidemiology</topic><topic>Scabies - parasitology</topic><topic>Scabies - prevention &amp; control</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><topic>Supervision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinyanjui, Timothy</creatorcontrib><creatorcontrib>Middleton, Jo</creatorcontrib><creatorcontrib>Güttel, Stefan</creatorcontrib><creatorcontrib>Cassell, Jackie</creatorcontrib><creatorcontrib>Ross, Joshua</creatorcontrib><creatorcontrib>House, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinyanjui, Timothy</au><au>Middleton, Jo</au><au>Güttel, Stefan</au><au>Cassell, Jackie</au><au>Ross, Joshua</au><au>House, Thomas</au><au>Alizon, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><spage>e1006046</spage><epage>e1006046</epage><pages>e1006046-e1006046</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In the context of an ageing population, understanding the transmission of infectious diseases such as scabies through well-connected sub-units of the population, such as residential care homes, is particularly important for the design of efficient interventions to mitigate against the effects of those diseases. Here, we present a modelling methodology based on the efficient solution of a large-scale system of linear differential equations that allows statistical calibration of individual-based random models to real data on scabies in residential care homes. In particular, we review and benchmark different numerical methods for the integration of the differential equation system, and then select the most appropriate of these methods to perform inference using Markov chain Monte Carlo. We test the goodness-of-fit of this model using posterior predictive intervals and propagate forward the resulting parameter uncertainty in a Bayesian framework to consider the economic cost of delayed interventions against scabies, quantifying the benefits of prompt action in the event of detection. We also revisit the previous methodology used to assess the safety of treatments in small population sub-units-in this context ivermectin-and demonstrate that even a very slight relaxation of the implicit assumption of homogeneous death rates significantly increases the plausibility of the hypothesis that ivermectin does not cause excess mortality based upon the data of Barkwell and Shields.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29579037</pmid><doi>10.1371/journal.pcbi.1006046</doi><orcidid>https://orcid.org/0000-0001-5461-4946</orcidid><orcidid>https://orcid.org/0000-0001-5835-8062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-03, Vol.14 (3), p.e1006046-e1006046
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2025710538
source Publicly Available Content Database; PubMed Central
subjects Approximation
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Calibration
Communicable Disease Control - methods
Communicable Disease Control - statistics & numerical data
Communicable Diseases - transmission
Computational mathematics
Computer simulation
Councils
Cross infection
Differential equations
Disease
Goodness of fit
Health aspects
Households
Houses
Humans
Infectious diseases
Inference
Ivermectin
Ivermectin - therapeutic use
Markov analysis
Markov Chains
Mathematical models
Medicine and Health Sciences
Methods
Monte Carlo Method
Monte Carlo simulation
Numerical analysis
Numerical methods
Nursing homes
Parameter uncertainty
Physical Sciences
Population
Population (statistical)
Primary care
Public health
Research and Analysis Methods
Residential Facilities
Risk factors
Scabies
Scabies - epidemiology
Scabies - parasitology
Scabies - prevention & control
Social Sciences
Software
Statistical analysis
Stochastic models
Supervision
title Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scabies%20in%20residential%20care%20homes:%20Modelling,%20inference%20and%20interventions%20for%20well-connected%20population%20sub-units&rft.jtitle=PLoS%20computational%20biology&rft.au=Kinyanjui,%20Timothy&rft.date=2018-03-01&rft.volume=14&rft.issue=3&rft.spage=e1006046&rft.epage=e1006046&rft.pages=e1006046-e1006046&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006046&rft_dat=%3Cgale_plos_%3EA533351931%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c661t-cf5ec18a1bac3669c8ed976ae62707875cab2cb87594335cbfefdffbad95127f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2025710538&rft_id=info:pmid/29579037&rft_galeid=A533351931&rfr_iscdi=true