Loading…
Combining multi-modality data for searching biomarkers in schizophrenia
Identification of imaging biomarkers for schizophrenia is an important but still challenging problem. Even though considerable efforts have been made over the past decades, quantitative alterations between patients and healthy subjects have not yet provided a diagnostic measure with sufficient high...
Saved in:
Published in: | PloS one 2018-02, Vol.13 (2), p.e0191202-e0191202 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c692t-f7926ae2c86bc88c95f8366353a5c31fa07ba660b3eb8706c232fe5e96f3493c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c692t-f7926ae2c86bc88c95f8366353a5c31fa07ba660b3eb8706c232fe5e96f3493c3 |
container_end_page | e0191202 |
container_issue | 2 |
container_start_page | e0191202 |
container_title | PloS one |
container_volume | 13 |
creator | Guo, Shuixia Huang, Chu-Chung Zhao, Wei Yang, Albert C Lin, Ching-Po Nichols, Thomas Tsai, Shih-Jen |
description | Identification of imaging biomarkers for schizophrenia is an important but still challenging problem. Even though considerable efforts have been made over the past decades, quantitative alterations between patients and healthy subjects have not yet provided a diagnostic measure with sufficient high sensitivity and specificity. One of the most important reasons is the lack of consistent findings, which is in part due to single-mode study, which only detects single dimensional information by each modality, and thus misses the most crucial differences between groups. Here, we hypothesize that multimodal integration of functional MRI (fMRI), structural MRI (sMRI), and diffusion tensor imaging (DTI) might yield more power for the diagnosis of schizophrenia. A novel multivariate data fusion method for combining these modalities is introduced without reducing the dimension or using the priors from 161 schizophrenia patients and 168 matched healthy controls. The multi-index feature for each ROI is constructed and summarized with Wilk's lambda by performing multivariate analysis of variance to calculate the significant difference between different groups. Our results show that, among these modalities, fMRI has the most significant featureby calculating the Jaccard similarity coefficient (0.7416) and Kappa index (0.4833). Furthermore, fusion of these modalities provides the most plentiful information and the highest predictive accuracy of 86.52%. This work indicates that multimodal integration can improve the ability of distinguishing differences between groups and might be assisting in further diagnosis of schizophrenia. |
doi_str_mv | 10.1371/journal.pone.0191202 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2036796379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A525922076</galeid><doaj_id>oai_doaj_org_article_3d4b0934772d4aa1b6974f3d96566b3d</doaj_id><sourcerecordid>A525922076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f7926ae2c86bc88c95f8366353a5c31fa07ba660b3eb8706c232fe5e96f3493c3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi1nzMJJMboSxaFwoFv25DJpPsZs0k2yQj1l9v1p2WHemF5CLh5DnvyTl5i-I5BAuIKXy39WNwwi523qkFgAwigB4Up5BhVBEE8MOj80nxJMYtAA1uCXlcnCCGW8ZaclpcLP3QGWfcuhxGm0w1-F5Yk27KXiRRah_KqESQmz3RGT-I8EOFWBpXxhz87XeboJwRT4tHWtionk37WfHt44evy0_V5dXFanl-WUnCUKo0ZYgIhWRLOtm2kjW6xYTgBotGYqgFoJ0gBHRYdS0FRCKMtGoUIxrXDEt8Vrw86O6sj3yaQeS5R0IZwZRlYnUgei-2fBdMfvIN98LwvwEf1lyEZKRVHPd1BxiuKUV9LQTsCKO1xj0jDSEd7rPW-6na2A2ql8qlIOxMdH7jzIav_U_eUFYDCrPAm0kg-OtRxcQHE6WyVjjlx8ghYzh_BK2bjL76B72_u4lai9yAcdrnunIvys8b1DCEACWZWtxD5dWrwchsGG1yfJbwdpaQmaR-pbUYY-SrL5__n736PmdfH7EbJWzaRG_HZLyLc7A-gDL4GIPSd0OGgO_9fjsNvvc7n_ye014cf9Bd0q3B8R8rkvnz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036796379</pqid></control><display><type>article</type><title>Combining multi-modality data for searching biomarkers in schizophrenia</title><source>PubMed Central(OpenAccess)</source><source>ProQuest - Publicly Available Content Database</source><creator>Guo, Shuixia ; Huang, Chu-Chung ; Zhao, Wei ; Yang, Albert C ; Lin, Ching-Po ; Nichols, Thomas ; Tsai, Shih-Jen</creator><contributor>Hu, Dewen</contributor><creatorcontrib>Guo, Shuixia ; Huang, Chu-Chung ; Zhao, Wei ; Yang, Albert C ; Lin, Ching-Po ; Nichols, Thomas ; Tsai, Shih-Jen ; Hu, Dewen</creatorcontrib><description>Identification of imaging biomarkers for schizophrenia is an important but still challenging problem. Even though considerable efforts have been made over the past decades, quantitative alterations between patients and healthy subjects have not yet provided a diagnostic measure with sufficient high sensitivity and specificity. One of the most important reasons is the lack of consistent findings, which is in part due to single-mode study, which only detects single dimensional information by each modality, and thus misses the most crucial differences between groups. Here, we hypothesize that multimodal integration of functional MRI (fMRI), structural MRI (sMRI), and diffusion tensor imaging (DTI) might yield more power for the diagnosis of schizophrenia. A novel multivariate data fusion method for combining these modalities is introduced without reducing the dimension or using the priors from 161 schizophrenia patients and 168 matched healthy controls. The multi-index feature for each ROI is constructed and summarized with Wilk's lambda by performing multivariate analysis of variance to calculate the significant difference between different groups. Our results show that, among these modalities, fMRI has the most significant featureby calculating the Jaccard similarity coefficient (0.7416) and Kappa index (0.4833). Furthermore, fusion of these modalities provides the most plentiful information and the highest predictive accuracy of 86.52%. This work indicates that multimodal integration can improve the ability of distinguishing differences between groups and might be assisting in further diagnosis of schizophrenia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0191202</identifier><identifier>PMID: 29389986</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Biological markers ; Biology and Life Sciences ; Biomarkers ; Biomarkers - analysis ; Brain Mapping - methods ; Brain research ; Case-Control Studies ; Computer science ; Data integration ; Diagnosis ; Diagnostic systems ; Diffusion Tensor Imaging - methods ; Female ; Functional magnetic resonance imaging ; Genomes ; Genomics ; Humans ; Image Interpretation, Computer-Assisted - methods ; Information processing ; Laboratories ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Mathematical analysis ; Medical diagnosis ; Medical imaging ; Medical research ; Medicine and Health Sciences ; Mental disorders ; Middle Aged ; Multimodal Imaging - methods ; Multisensor fusion ; Multivariate analysis ; Neuroimaging ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Patients ; Psychiatry ; Research and Analysis Methods ; Schizophrenia ; Schizophrenia - diagnosis ; Sensory integration ; Structure-function relationships ; Variance analysis</subject><ispartof>PloS one, 2018-02, Vol.13 (2), p.e0191202-e0191202</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Guo et al 2018 Guo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f7926ae2c86bc88c95f8366353a5c31fa07ba660b3eb8706c232fe5e96f3493c3</citedby><cites>FETCH-LOGICAL-c692t-f7926ae2c86bc88c95f8366353a5c31fa07ba660b3eb8706c232fe5e96f3493c3</cites><orcidid>0000-0003-2714-3477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2036796379/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2036796379?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29389986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hu, Dewen</contributor><creatorcontrib>Guo, Shuixia</creatorcontrib><creatorcontrib>Huang, Chu-Chung</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Yang, Albert C</creatorcontrib><creatorcontrib>Lin, Ching-Po</creatorcontrib><creatorcontrib>Nichols, Thomas</creatorcontrib><creatorcontrib>Tsai, Shih-Jen</creatorcontrib><title>Combining multi-modality data for searching biomarkers in schizophrenia</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identification of imaging biomarkers for schizophrenia is an important but still challenging problem. Even though considerable efforts have been made over the past decades, quantitative alterations between patients and healthy subjects have not yet provided a diagnostic measure with sufficient high sensitivity and specificity. One of the most important reasons is the lack of consistent findings, which is in part due to single-mode study, which only detects single dimensional information by each modality, and thus misses the most crucial differences between groups. Here, we hypothesize that multimodal integration of functional MRI (fMRI), structural MRI (sMRI), and diffusion tensor imaging (DTI) might yield more power for the diagnosis of schizophrenia. A novel multivariate data fusion method for combining these modalities is introduced without reducing the dimension or using the priors from 161 schizophrenia patients and 168 matched healthy controls. The multi-index feature for each ROI is constructed and summarized with Wilk's lambda by performing multivariate analysis of variance to calculate the significant difference between different groups. Our results show that, among these modalities, fMRI has the most significant featureby calculating the Jaccard similarity coefficient (0.7416) and Kappa index (0.4833). Furthermore, fusion of these modalities provides the most plentiful information and the highest predictive accuracy of 86.52%. This work indicates that multimodal integration can improve the ability of distinguishing differences between groups and might be assisting in further diagnosis of schizophrenia.</description><subject>Adult</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Case-Control Studies</subject><subject>Computer science</subject><subject>Data integration</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Information processing</subject><subject>Laboratories</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mental disorders</subject><subject>Middle Aged</subject><subject>Multimodal Imaging - methods</subject><subject>Multisensor fusion</subject><subject>Multivariate analysis</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>Psychiatry</subject><subject>Research and Analysis Methods</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnosis</subject><subject>Sensory integration</subject><subject>Structure-function relationships</subject><subject>Variance analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi1nzMJJMboSxaFwoFv25DJpPsZs0k2yQj1l9v1p2WHemF5CLh5DnvyTl5i-I5BAuIKXy39WNwwi523qkFgAwigB4Up5BhVBEE8MOj80nxJMYtAA1uCXlcnCCGW8ZaclpcLP3QGWfcuhxGm0w1-F5Yk27KXiRRah_KqESQmz3RGT-I8EOFWBpXxhz87XeboJwRT4tHWtionk37WfHt44evy0_V5dXFanl-WUnCUKo0ZYgIhWRLOtm2kjW6xYTgBotGYqgFoJ0gBHRYdS0FRCKMtGoUIxrXDEt8Vrw86O6sj3yaQeS5R0IZwZRlYnUgei-2fBdMfvIN98LwvwEf1lyEZKRVHPd1BxiuKUV9LQTsCKO1xj0jDSEd7rPW-6na2A2ql8qlIOxMdH7jzIav_U_eUFYDCrPAm0kg-OtRxcQHE6WyVjjlx8ghYzh_BK2bjL76B72_u4lai9yAcdrnunIvys8b1DCEACWZWtxD5dWrwchsGG1yfJbwdpaQmaR-pbUYY-SrL5__n736PmdfH7EbJWzaRG_HZLyLc7A-gDL4GIPSd0OGgO_9fjsNvvc7n_ye014cf9Bd0q3B8R8rkvnz</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Guo, Shuixia</creator><creator>Huang, Chu-Chung</creator><creator>Zhao, Wei</creator><creator>Yang, Albert C</creator><creator>Lin, Ching-Po</creator><creator>Nichols, Thomas</creator><creator>Tsai, Shih-Jen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2714-3477</orcidid></search><sort><creationdate>20180201</creationdate><title>Combining multi-modality data for searching biomarkers in schizophrenia</title><author>Guo, Shuixia ; Huang, Chu-Chung ; Zhao, Wei ; Yang, Albert C ; Lin, Ching-Po ; Nichols, Thomas ; Tsai, Shih-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f7926ae2c86bc88c95f8366353a5c31fa07ba660b3eb8706c232fe5e96f3493c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Case-Control Studies</topic><topic>Computer science</topic><topic>Data integration</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Information processing</topic><topic>Laboratories</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mental disorders</topic><topic>Middle Aged</topic><topic>Multimodal Imaging - methods</topic><topic>Multisensor fusion</topic><topic>Multivariate analysis</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>Psychiatry</topic><topic>Research and Analysis Methods</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnosis</topic><topic>Sensory integration</topic><topic>Structure-function relationships</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shuixia</creatorcontrib><creatorcontrib>Huang, Chu-Chung</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Yang, Albert C</creatorcontrib><creatorcontrib>Lin, Ching-Po</creatorcontrib><creatorcontrib>Nichols, Thomas</creatorcontrib><creatorcontrib>Tsai, Shih-Jen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shuixia</au><au>Huang, Chu-Chung</au><au>Zhao, Wei</au><au>Yang, Albert C</au><au>Lin, Ching-Po</au><au>Nichols, Thomas</au><au>Tsai, Shih-Jen</au><au>Hu, Dewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining multi-modality data for searching biomarkers in schizophrenia</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>e0191202</spage><epage>e0191202</epage><pages>e0191202-e0191202</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identification of imaging biomarkers for schizophrenia is an important but still challenging problem. Even though considerable efforts have been made over the past decades, quantitative alterations between patients and healthy subjects have not yet provided a diagnostic measure with sufficient high sensitivity and specificity. One of the most important reasons is the lack of consistent findings, which is in part due to single-mode study, which only detects single dimensional information by each modality, and thus misses the most crucial differences between groups. Here, we hypothesize that multimodal integration of functional MRI (fMRI), structural MRI (sMRI), and diffusion tensor imaging (DTI) might yield more power for the diagnosis of schizophrenia. A novel multivariate data fusion method for combining these modalities is introduced without reducing the dimension or using the priors from 161 schizophrenia patients and 168 matched healthy controls. The multi-index feature for each ROI is constructed and summarized with Wilk's lambda by performing multivariate analysis of variance to calculate the significant difference between different groups. Our results show that, among these modalities, fMRI has the most significant featureby calculating the Jaccard similarity coefficient (0.7416) and Kappa index (0.4833). Furthermore, fusion of these modalities provides the most plentiful information and the highest predictive accuracy of 86.52%. This work indicates that multimodal integration can improve the ability of distinguishing differences between groups and might be assisting in further diagnosis of schizophrenia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29389986</pmid><doi>10.1371/journal.pone.0191202</doi><tpages>e0191202</tpages><orcidid>https://orcid.org/0000-0003-2714-3477</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-02, Vol.13 (2), p.e0191202-e0191202 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2036796379 |
source | PubMed Central(OpenAccess); ProQuest - Publicly Available Content Database |
subjects | Adult Biological markers Biology and Life Sciences Biomarkers Biomarkers - analysis Brain Mapping - methods Brain research Case-Control Studies Computer science Data integration Diagnosis Diagnostic systems Diffusion Tensor Imaging - methods Female Functional magnetic resonance imaging Genomes Genomics Humans Image Interpretation, Computer-Assisted - methods Information processing Laboratories Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Mathematical analysis Medical diagnosis Medical imaging Medical research Medicine and Health Sciences Mental disorders Middle Aged Multimodal Imaging - methods Multisensor fusion Multivariate analysis Neuroimaging Neurosciences NMR Nuclear magnetic resonance Patients Psychiatry Research and Analysis Methods Schizophrenia Schizophrenia - diagnosis Sensory integration Structure-function relationships Variance analysis |
title | Combining multi-modality data for searching biomarkers in schizophrenia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20multi-modality%20data%20for%20searching%20biomarkers%20in%20schizophrenia&rft.jtitle=PloS%20one&rft.au=Guo,%20Shuixia&rft.date=2018-02-01&rft.volume=13&rft.issue=2&rft.spage=e0191202&rft.epage=e0191202&rft.pages=e0191202-e0191202&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0191202&rft_dat=%3Cgale_plos_%3EA525922076%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-f7926ae2c86bc88c95f8366353a5c31fa07ba660b3eb8706c232fe5e96f3493c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2036796379&rft_id=info:pmid/29389986&rft_galeid=A525922076&rfr_iscdi=true |