Loading…
Physical and cognitive doping in university students using the unrelated question model (UQM): Assessing the influence of the probability of receiving the sensitive question on prevalence estimation
In order to increase the value of randomized response techniques (RRTs) as tools for studying sensitive issues, the present study investigated whether the prevalence estimate for a sensitive item [Formula: see text] assessed with the unrelated questionnaire method (UQM) is influenced by changing the...
Saved in:
Published in: | PloS one 2018-05, Vol.13 (5), p.e0197270 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In order to increase the value of randomized response techniques (RRTs) as tools for studying sensitive issues, the present study investigated whether the prevalence estimate for a sensitive item [Formula: see text] assessed with the unrelated questionnaire method (UQM) is influenced by changing the probability of receiving the sensitive question p.
A short paper-and-pencil questionnaire was distributed to 1.243 university students assessing the 12-month prevalence of physical and cognitive doping using two versions of the UQM with different probabilities for receiving the sensitive question (p ≈ 1/3 and p ≈ 2/3). Likelihood ratio tests were used to assess whether the prevalence estimates for physical and cognitive doping differed significantly between p ≈ 1/3 and p ≈ 2/3. The order of questions (physical doping and cognitive doping) as well as the probability of receiving the sensitive question (p ≈ 1/3 or p ≈ 2/3) were counterbalanced across participants. Statistical power analyses were performed to determine sample size.
The prevalence estimate for physical doping with p ≈ 1/3 was 22.5% (95% CI: 10.8-34.1), and 12.8% (95% CI: 7.6-18.0) with p ≈ 2/3. For cognitive doping with p ≈ 1/3, the estimated prevalence was 22.5% (95% CI: 11.0-34.1), whereas it was 18.0% (95% CI: 12.5-23.5) with p ≈ 2/3. Likelihood-ratio tests revealed that prevalence estimates for both physical and cognitive doping, respectively, did not differ significantly under p ≈ 1/3 and p ≈ 2/3 (physical doping: χ2 = 2.25, df = 1, p = 0.13; cognitive doping: χ2 = 0.49, df = 1, p = 0.48). Bayes factors computed with the Savage-Dickey method favored the null ("the prevalence estimates are identical under p ≈ 1/3 and p ≈ 2/3") over the alternative ("the prevalence estimates differ under p ≈ 1/3 and p ≈ 2/3") hypothesis for both physical doping (BF = 2.3) and cognitive doping (BF = 5.3).
The present results suggest that prevalence estimates for physical and cognitive doping assessed by the UQM are largely unaffected by the probability for receiving the sensitive question p. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0197270 |