Loading…

Development of an RP-UHPLC-PDA method for quantification of free gossypol in cottonseed cake and fungal-treated cottonseed cake

Cottonseed cake biomass, which is a residue of oil extraction, is potentially appropriate for use as animal feed, given the high mineral, fibre and protein content. The presence of free gossypol, however, a toxic pigment in the glands of the cotton plant, limits use of this biomass for monogastric l...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-05, Vol.13 (5), p.e0196164
Main Authors: Conceição, Aparecido Almeida, Soares Neto, Clemente Batista, Ribeiro, José Antônio de Aquino, Siqueira, Felix Gonçalves de, Miller, Robert Neil Gerard, Mendonça, Simone
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cottonseed cake biomass, which is a residue of oil extraction, is potentially appropriate for use as animal feed, given the high mineral, fibre and protein content. The presence of free gossypol, however, a toxic pigment in the glands of the cotton plant, limits use of this biomass for monogastric livestock. A promising method to detoxify cottonseed cake relies on fermentation by fungi, which can eliminate up to 100% of gossypol. In order to quantify trace levels of free gossypol in different cotton materials, including cottonseed cake treated with macrofungi, a simple and rapid chromatographic detection method was developed and validated. Under optimized conditions, extraction was performed using 70% acetone. The extract was then analysed by Ultra High-Performance Liquid Chromatography (UHPLC), with gradient elution on a C18 reverse phase column KINETEX® (100 x 2.10 mm, 2.6 μm). Methanol-0.1% TFA aqueous solution was employed as mobile phase and PDA detection conducted at 254 nm. The optimized method was validated by analysis of specificity, linearity and range, limit of detection, limit of quantification, precision and accuracy. Detection and quantification limits were observed at 0.2 and 0.5 μg/mL, respectively. With good reproducibility, with precision (RSD)
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0196164