Loading…
Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport
The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells...
Saved in:
Published in: | PloS one 2018-06, Vol.13 (6), p.e0198936-e0198936 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-d2e2e8af935d12bd2063678c77f5fec6c2044bb8e4294abc3248ae57cbab1d453 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-d2e2e8af935d12bd2063678c77f5fec6c2044bb8e4294abc3248ae57cbab1d453 |
container_end_page | e0198936 |
container_issue | 6 |
container_start_page | e0198936 |
container_title | PloS one |
container_volume | 13 |
creator | Amano, Ikuko Kitajima, Sakihito Suzuki, Hideyuki Koeduka, Takao Shitan, Nobukazu |
description | The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants. |
doi_str_mv | 10.1371/journal.pone.0198936 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2055611336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543294657</galeid><doaj_id>oai_doaj_org_article_145d01bf43b04d2686fab9c09b0664bd</doaj_id><sourcerecordid>A543294657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-d2e2e8af935d12bd2063678c77f5fec6c2044bb8e4294abc3248ae57cbab1d453</originalsourceid><addsrcrecordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OLYjpO8IE0Tl0qThmDwavly3Lpy4s52yvbOB8ddu6lFe0B-sHXyO_-TcyuKlxWaVqSpPiz9GAbhpis_wBRVXdsR9qg4rjqCJwwj8njvfVQ8i3GJUE1axp4WR7jrEMYNPS7-XAYxRBXsKvkeSpEVb6KNpTflN0jjYEUprq1zImSjcf43hFgGWINwsZzDALG0w9q7Nej8KHsfVgvv_Nwq4UptjYEAQ7IiWT9kdV32kIT0ziYo0yb0yof0vHhish682N0nxc_Pny7Pvk7OL77Mzk7PJ6qp2zTRGDC0wnSk1hWWGiNGWNOqpjG1AcUURpRK2QLFHRVSEUxbAXWjpJCVpjU5KV5vdVfOR74rYOQY1TWrKkJYJmZbQnux5KtgexFuuBeW3xp8mHMRklUOeEVrjSppKJGIasxaZoTsFOokYoxKnbU-7qKNsgetch2CcAeih18Gu-Bzv-YMoZxJkwXe7QSCvxohJt7bqCA3YwA_3v43Ix3Orc_om3_Qh7PbUXORE7CD8Tmu2ojy05qSXDVWb8JOH6Dy0dBblafN2Gw_cHh_4JCZBNdpLsYY-ezH9_9nL34dsm_32EUeubSI3o2bWYqHIN2CKvgYA5j7IleIb5blrhp8syx8tyzZ7dV-g-6d7raD_AUy6BME</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055611336</pqid></control><display><type>article</type><title>Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Amano, Ikuko ; Kitajima, Sakihito ; Suzuki, Hideyuki ; Koeduka, Takao ; Shitan, Nobukazu</creator><contributor>Aceto, Serena</contributor><creatorcontrib>Amano, Ikuko ; Kitajima, Sakihito ; Suzuki, Hideyuki ; Koeduka, Takao ; Shitan, Nobukazu ; Aceto, Serena</creatorcontrib><description>The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0198936</identifier><identifier>PMID: 29902274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Allelochemicals ; Animal reproduction ; Arabidopsis ; Biological activity ; Biological Transport ; Biology ; Biology and Life Sciences ; Biosynthesis ; Carbohydrates ; Cell division ; Differentiation ; Encyclopedias ; Enzymes ; Fatty acids ; Flowers ; Flowers & plants ; Flowers - genetics ; Flowers - growth & development ; Flowers - metabolism ; Gene expression ; Gene Expression Profiling ; Gene sequencing ; Genes ; Genetic aspects ; Genomes ; Gibberellins ; Homology ; Hormones ; Laboratories ; Leaves ; Limbs ; Medicine and Health Sciences ; Metabolic pathways ; Metabolism ; Metabolites ; Molecular chains ; Molecular modelling ; Morphology ; Nitrates ; Petunia ; Petunia - genetics ; Petunia - growth & development ; Petunia - metabolism ; Petunia axillaris ; Petunia hybrida ; Phenylpropanoids ; Physiological aspects ; Plant metabolites ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant reproduction ; Plants (botany) ; Pollinators ; Proteins ; R&D ; Research & development ; Ribonucleic acid ; RNA ; Secondary metabolites ; Sucrose ; Transport ; VOCs ; Volatile organic compounds ; Volatiles</subject><ispartof>PloS one, 2018-06, Vol.13 (6), p.e0198936-e0198936</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Amano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Amano et al 2018 Amano et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-d2e2e8af935d12bd2063678c77f5fec6c2044bb8e4294abc3248ae57cbab1d453</citedby><cites>FETCH-LOGICAL-c758t-d2e2e8af935d12bd2063678c77f5fec6c2044bb8e4294abc3248ae57cbab1d453</cites><orcidid>0000-0001-7760-2745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2055611336/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2055611336?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29902274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aceto, Serena</contributor><creatorcontrib>Amano, Ikuko</creatorcontrib><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Suzuki, Hideyuki</creatorcontrib><creatorcontrib>Koeduka, Takao</creatorcontrib><creatorcontrib>Shitan, Nobukazu</creatorcontrib><title>Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants.</description><subject>Allelochemicals</subject><subject>Animal reproduction</subject><subject>Arabidopsis</subject><subject>Biological activity</subject><subject>Biological Transport</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrates</subject><subject>Cell division</subject><subject>Differentiation</subject><subject>Encyclopedias</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Flowers</subject><subject>Flowers & plants</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Flowers - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Gibberellins</subject><subject>Homology</subject><subject>Hormones</subject><subject>Laboratories</subject><subject>Leaves</subject><subject>Limbs</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Molecular chains</subject><subject>Molecular modelling</subject><subject>Morphology</subject><subject>Nitrates</subject><subject>Petunia</subject><subject>Petunia - genetics</subject><subject>Petunia - growth & development</subject><subject>Petunia - metabolism</subject><subject>Petunia axillaris</subject><subject>Petunia hybrida</subject><subject>Phenylpropanoids</subject><subject>Physiological aspects</subject><subject>Plant metabolites</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant reproduction</subject><subject>Plants (botany)</subject><subject>Pollinators</subject><subject>Proteins</subject><subject>R&D</subject><subject>Research & development</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Secondary metabolites</subject><subject>Sucrose</subject><subject>Transport</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatiles</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tv0zAUxyMEYmPwDRBEQkLw0OLYjpO8IE0Tl0qThmDwavly3Lpy4s52yvbOB8ddu6lFe0B-sHXyO_-TcyuKlxWaVqSpPiz9GAbhpis_wBRVXdsR9qg4rjqCJwwj8njvfVQ8i3GJUE1axp4WR7jrEMYNPS7-XAYxRBXsKvkeSpEVb6KNpTflN0jjYEUprq1zImSjcf43hFgGWINwsZzDALG0w9q7Nej8KHsfVgvv_Nwq4UptjYEAQ7IiWT9kdV32kIT0ziYo0yb0yof0vHhish682N0nxc_Pny7Pvk7OL77Mzk7PJ6qp2zTRGDC0wnSk1hWWGiNGWNOqpjG1AcUURpRK2QLFHRVSEUxbAXWjpJCVpjU5KV5vdVfOR74rYOQY1TWrKkJYJmZbQnux5KtgexFuuBeW3xp8mHMRklUOeEVrjSppKJGIasxaZoTsFOokYoxKnbU-7qKNsgetch2CcAeih18Gu-Bzv-YMoZxJkwXe7QSCvxohJt7bqCA3YwA_3v43Ix3Orc_om3_Qh7PbUXORE7CD8Tmu2ojy05qSXDVWb8JOH6Dy0dBblafN2Gw_cHh_4JCZBNdpLsYY-ezH9_9nL34dsm_32EUeubSI3o2bWYqHIN2CKvgYA5j7IleIb5blrhp8syx8tyzZ7dV-g-6d7raD_AUy6BME</recordid><startdate>20180614</startdate><enddate>20180614</enddate><creator>Amano, Ikuko</creator><creator>Kitajima, Sakihito</creator><creator>Suzuki, Hideyuki</creator><creator>Koeduka, Takao</creator><creator>Shitan, Nobukazu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7760-2745</orcidid></search><sort><creationdate>20180614</creationdate><title>Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport</title><author>Amano, Ikuko ; Kitajima, Sakihito ; Suzuki, Hideyuki ; Koeduka, Takao ; Shitan, Nobukazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-d2e2e8af935d12bd2063678c77f5fec6c2044bb8e4294abc3248ae57cbab1d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Allelochemicals</topic><topic>Animal reproduction</topic><topic>Arabidopsis</topic><topic>Biological activity</topic><topic>Biological Transport</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrates</topic><topic>Cell division</topic><topic>Differentiation</topic><topic>Encyclopedias</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Flowers</topic><topic>Flowers & plants</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Flowers - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Gibberellins</topic><topic>Homology</topic><topic>Hormones</topic><topic>Laboratories</topic><topic>Leaves</topic><topic>Limbs</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Molecular chains</topic><topic>Molecular modelling</topic><topic>Morphology</topic><topic>Nitrates</topic><topic>Petunia</topic><topic>Petunia - genetics</topic><topic>Petunia - growth & development</topic><topic>Petunia - metabolism</topic><topic>Petunia axillaris</topic><topic>Petunia hybrida</topic><topic>Phenylpropanoids</topic><topic>Physiological aspects</topic><topic>Plant metabolites</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant reproduction</topic><topic>Plants (botany)</topic><topic>Pollinators</topic><topic>Proteins</topic><topic>R&D</topic><topic>Research & development</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Secondary metabolites</topic><topic>Sucrose</topic><topic>Transport</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amano, Ikuko</creatorcontrib><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Suzuki, Hideyuki</creatorcontrib><creatorcontrib>Koeduka, Takao</creatorcontrib><creatorcontrib>Shitan, Nobukazu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amano, Ikuko</au><au>Kitajima, Sakihito</au><au>Suzuki, Hideyuki</au><au>Koeduka, Takao</au><au>Shitan, Nobukazu</au><au>Aceto, Serena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-06-14</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>e0198936</spage><epage>e0198936</epage><pages>e0198936-e0198936</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29902274</pmid><doi>10.1371/journal.pone.0198936</doi><tpages>e0198936</tpages><orcidid>https://orcid.org/0000-0001-7760-2745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-06, Vol.13 (6), p.e0198936-e0198936 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2055611336 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Allelochemicals Animal reproduction Arabidopsis Biological activity Biological Transport Biology Biology and Life Sciences Biosynthesis Carbohydrates Cell division Differentiation Encyclopedias Enzymes Fatty acids Flowers Flowers & plants Flowers - genetics Flowers - growth & development Flowers - metabolism Gene expression Gene Expression Profiling Gene sequencing Genes Genetic aspects Genomes Gibberellins Homology Hormones Laboratories Leaves Limbs Medicine and Health Sciences Metabolic pathways Metabolism Metabolites Molecular chains Molecular modelling Morphology Nitrates Petunia Petunia - genetics Petunia - growth & development Petunia - metabolism Petunia axillaris Petunia hybrida Phenylpropanoids Physiological aspects Plant metabolites Plant Proteins - genetics Plant Proteins - metabolism Plant reproduction Plants (botany) Pollinators Proteins R&D Research & development Ribonucleic acid RNA Secondary metabolites Sucrose Transport VOCs Volatile organic compounds Volatiles |
title | Transcriptome analysis of Petunia axillaris flowers reveals genes involved in morphological differentiation and metabolite transport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20of%20Petunia%20axillaris%20flowers%20reveals%20genes%20involved%20in%20morphological%20differentiation%20and%20metabolite%20transport&rft.jtitle=PloS%20one&rft.au=Amano,%20Ikuko&rft.date=2018-06-14&rft.volume=13&rft.issue=6&rft.spage=e0198936&rft.epage=e0198936&rft.pages=e0198936-e0198936&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0198936&rft_dat=%3Cgale_plos_%3EA543294657%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-d2e2e8af935d12bd2063678c77f5fec6c2044bb8e4294abc3248ae57cbab1d453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2055611336&rft_id=info:pmid/29902274&rft_galeid=A543294657&rfr_iscdi=true |