Loading…

Determinants of high mountain plant diversity in the Chilean Andes: From regional to local spatial scales

Mountains are considered excellent natural laboratories for studying the determinants of plant diversity at contrasting spatial scales. To gain insights into how plant diversity is structured at different spatial scales, we surveyed high mountain plant communities in the Chilean Andes where man-driv...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-07, Vol.13 (7), p.e0200216-e0200216
Main Authors: López-Angulo, Jesús, Pescador, David S, Sánchez, Ana M, Mihoč, Maritza A K, Cavieres, Lohengrin A, Escudero, Adrián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mountains are considered excellent natural laboratories for studying the determinants of plant diversity at contrasting spatial scales. To gain insights into how plant diversity is structured at different spatial scales, we surveyed high mountain plant communities in the Chilean Andes where man-driven perturbations are rare. This was done along elevational gradients located at different latitudes taking into account factors that act at fine scales, including abiotic (potential solar radiation and soil quality) and biotic (species interactions) factors, and considering multiple spatial scales. Species richness, inverse of Simpson's concentration (Dequiv), beta-diversity and plant cover were estimated using the percentage of cover per species recorded in 34 sites in the different regions with contrasted climates. Overall, plant species richness, Dequiv and plant cover were lower in sites located at higher latitudes. We found a unimodal relationship between species richness and elevation and this pattern was constant independently of the regional climatic conditions. Soil quality decreased the beta-diversity among the plots in each massif and increased the richness, the Dequiv and cover. Segregated patterns of species co-occurrence were related to increases in richness, Dequiv and plant cover at finer scales. Our results showed that elevation patterns of alpine plant diversity remained constant along the regions although the mechanisms underlying these diversity patterns may differ among climatic regions. They also suggested that the patterns of plant diversity in alpine ecosystems respond to a series of factors (abiotic and biotic) that act jointly at different spatial scale determining the assemblages of local communities, but their importance can only be assessed using a multi-scale spatial approach.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0200216