Loading…

A machine learning method to monitor China's AIDS epidemics with data from Baidu trends

AIDS is a worrying public health issue in China and lacks timely and effective surveillance. With the diffusion and adoption of the Internet, the 'big data' aggregated from Internet search engines, which contain users' information on the concern or reality of their health status, prov...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-07, Vol.13 (7), p.e0199697-e0199697
Main Authors: Nan, Yongqing, Gao, Yanyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-4b200079667b65e1051df16fd2858180702b418373a791097e7739aad28716663
cites cdi_FETCH-LOGICAL-c692t-4b200079667b65e1051df16fd2858180702b418373a791097e7739aad28716663
container_end_page e0199697
container_issue 7
container_start_page e0199697
container_title PloS one
container_volume 13
creator Nan, Yongqing
Gao, Yanyan
description AIDS is a worrying public health issue in China and lacks timely and effective surveillance. With the diffusion and adoption of the Internet, the 'big data' aggregated from Internet search engines, which contain users' information on the concern or reality of their health status, provide a new opportunity for AIDS surveillance. This paper uses search engine data to monitor and forecast AIDS in China. A machine learning method, artificial neural networks (ANNs), is used to forecast AIDS incidences and deaths. Search trend data related to AIDS from the largest Chinese search engine, Baidu.com, are collected and selected as the input variables of ANNs, and officially reported actual AIDS incidences and deaths are used as the output variable. Three criteria, the mean absolute percentage error, the root mean squared percentage error, and the index of agreement, are used to test the forecasting performance of the ANN method. Based on the monthly time series data from January 2011 to June 2017, this article finds that, under the three criteria, the ANN method can lead to satisfactory forecasting of AIDS incidences and deaths, regardless of the change in the number of search queries. Despite the inability to self-detect HIV/AIDS through online searching, Internet-based data should be adopted as a timely, cost-effective complement to a traditional AIDS surveillance system.
doi_str_mv 10.1371/journal.pone.0199697
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2068338766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546243501</galeid><doaj_id>oai_doaj_org_article_64fb77d506f24a7fb9531737a4e8900f</doaj_id><sourcerecordid>A546243501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4b200079667b65e1051df16fd2858180702b418373a791097e7739aad28716663</originalsourceid><addsrcrecordid>eNqNktuO0zAQhiMEYpfCGyCwhMThosWHxI5vkEo5VVppJZbDpeUkduMqsYvtcHh73Da7atBeIF_Y8nzz2zPzZ9ljBBeIMPR66wZvZbfYOasWEHFOObuTnSNO8JxiSO6enM-yByFsISxISen97AxzzguO4Xn2fQl6WbfGKtAp6a2xG9Cr2LoGRAd6Z010HqwSIF8EsFy_uwJqZxrVmzqAXya2oJFRAu1dD95K0wwgemWb8DC7p2UX1KNxn2VfP7z_svo0v7j8uF4tL-Y15TjO8wpDCBmnlFW0UAgWqNGI6gaXRYlKyCCuclQSRiTjCHKmGCNcyhRniFJKZtnTo-6uc0GMPQkCQ1oSUrIDsT4SjZNbsfOml_6PcNKIw4XzGyF9NHWnBM11xVhTQKpxLpmueEEQI0zmquQQ6qT1ZnxtqHrV1MpGL7uJ6DRiTSs27qegMIcMsyTwchTw7segQhS9CbXqOmmVG47_5gjDNLNZ9uwf9PbqRmojUwHGapferfeiYlnkFOekgChRi1uotA6DTAbSJt1PEl5NEhIT1e-4kUMIYn31-f_Zy29T9vkJ2yrZxTa4bojG2TAF8yNYexeCV_qmyQiKvf-vuyH2_hej_1Pak9MB3SRdG578BcKm--c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068338766</pqid></control><display><type>article</type><title>A machine learning method to monitor China's AIDS epidemics with data from Baidu trends</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Nan, Yongqing ; Gao, Yanyan</creator><contributor>Lau, Eric HY</contributor><creatorcontrib>Nan, Yongqing ; Gao, Yanyan ; Lau, Eric HY</creatorcontrib><description>AIDS is a worrying public health issue in China and lacks timely and effective surveillance. With the diffusion and adoption of the Internet, the 'big data' aggregated from Internet search engines, which contain users' information on the concern or reality of their health status, provide a new opportunity for AIDS surveillance. This paper uses search engine data to monitor and forecast AIDS in China. A machine learning method, artificial neural networks (ANNs), is used to forecast AIDS incidences and deaths. Search trend data related to AIDS from the largest Chinese search engine, Baidu.com, are collected and selected as the input variables of ANNs, and officially reported actual AIDS incidences and deaths are used as the output variable. Three criteria, the mean absolute percentage error, the root mean squared percentage error, and the index of agreement, are used to test the forecasting performance of the ANN method. Based on the monthly time series data from January 2011 to June 2017, this article finds that, under the three criteria, the ANN method can lead to satisfactory forecasting of AIDS incidences and deaths, regardless of the change in the number of search queries. Despite the inability to self-detect HIV/AIDS through online searching, Internet-based data should be adopted as a timely, cost-effective complement to a traditional AIDS surveillance system.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0199697</identifier><identifier>PMID: 29995920</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acquired immune deficiency syndrome ; Acquired Immunodeficiency Syndrome - epidemiology ; AIDS ; AIDS (Disease) ; Analysis ; Artificial neural networks ; Biology and Life Sciences ; China ; Computer and Information Sciences ; Data management ; Epidemics ; Epidemics - statistics &amp; numerical data ; Fatalities ; Forecasting ; HIV ; Human immunodeficiency virus ; Humans ; Internet ; Learning algorithms ; Learning theory ; Machine Learning ; Medicine and Health Sciences ; Methods ; Neural networks ; People and Places ; Physical Sciences ; Prevalence studies (Epidemiology) ; Public health ; Research and Analysis Methods ; Search engines ; Sentinel surveillance ; Surveillance ; Trends</subject><ispartof>PloS one, 2018-07, Vol.13 (7), p.e0199697-e0199697</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Nan, Gao. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Nan, Gao 2018 Nan, Gao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4b200079667b65e1051df16fd2858180702b418373a791097e7739aad28716663</citedby><cites>FETCH-LOGICAL-c692t-4b200079667b65e1051df16fd2858180702b418373a791097e7739aad28716663</cites><orcidid>0000-0003-0326-504X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2068338766/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2068338766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29995920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lau, Eric HY</contributor><creatorcontrib>Nan, Yongqing</creatorcontrib><creatorcontrib>Gao, Yanyan</creatorcontrib><title>A machine learning method to monitor China's AIDS epidemics with data from Baidu trends</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>AIDS is a worrying public health issue in China and lacks timely and effective surveillance. With the diffusion and adoption of the Internet, the 'big data' aggregated from Internet search engines, which contain users' information on the concern or reality of their health status, provide a new opportunity for AIDS surveillance. This paper uses search engine data to monitor and forecast AIDS in China. A machine learning method, artificial neural networks (ANNs), is used to forecast AIDS incidences and deaths. Search trend data related to AIDS from the largest Chinese search engine, Baidu.com, are collected and selected as the input variables of ANNs, and officially reported actual AIDS incidences and deaths are used as the output variable. Three criteria, the mean absolute percentage error, the root mean squared percentage error, and the index of agreement, are used to test the forecasting performance of the ANN method. Based on the monthly time series data from January 2011 to June 2017, this article finds that, under the three criteria, the ANN method can lead to satisfactory forecasting of AIDS incidences and deaths, regardless of the change in the number of search queries. Despite the inability to self-detect HIV/AIDS through online searching, Internet-based data should be adopted as a timely, cost-effective complement to a traditional AIDS surveillance system.</description><subject>Acquired immune deficiency syndrome</subject><subject>Acquired Immunodeficiency Syndrome - epidemiology</subject><subject>AIDS</subject><subject>AIDS (Disease)</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Biology and Life Sciences</subject><subject>China</subject><subject>Computer and Information Sciences</subject><subject>Data management</subject><subject>Epidemics</subject><subject>Epidemics - statistics &amp; numerical data</subject><subject>Fatalities</subject><subject>Forecasting</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Internet</subject><subject>Learning algorithms</subject><subject>Learning theory</subject><subject>Machine Learning</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Neural networks</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Prevalence studies (Epidemiology)</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Search engines</subject><subject>Sentinel surveillance</subject><subject>Surveillance</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNktuO0zAQhiMEYpfCGyCwhMThosWHxI5vkEo5VVppJZbDpeUkduMqsYvtcHh73Da7atBeIF_Y8nzz2zPzZ9ljBBeIMPR66wZvZbfYOasWEHFOObuTnSNO8JxiSO6enM-yByFsISxISen97AxzzguO4Xn2fQl6WbfGKtAp6a2xG9Cr2LoGRAd6Z010HqwSIF8EsFy_uwJqZxrVmzqAXya2oJFRAu1dD95K0wwgemWb8DC7p2UX1KNxn2VfP7z_svo0v7j8uF4tL-Y15TjO8wpDCBmnlFW0UAgWqNGI6gaXRYlKyCCuclQSRiTjCHKmGCNcyhRniFJKZtnTo-6uc0GMPQkCQ1oSUrIDsT4SjZNbsfOml_6PcNKIw4XzGyF9NHWnBM11xVhTQKpxLpmueEEQI0zmquQQ6qT1ZnxtqHrV1MpGL7uJ6DRiTSs27qegMIcMsyTwchTw7segQhS9CbXqOmmVG47_5gjDNLNZ9uwf9PbqRmojUwHGapferfeiYlnkFOekgChRi1uotA6DTAbSJt1PEl5NEhIT1e-4kUMIYn31-f_Zy29T9vkJ2yrZxTa4bojG2TAF8yNYexeCV_qmyQiKvf-vuyH2_hej_1Pak9MB3SRdG578BcKm--c</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Nan, Yongqing</creator><creator>Gao, Yanyan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0326-504X</orcidid></search><sort><creationdate>20180711</creationdate><title>A machine learning method to monitor China's AIDS epidemics with data from Baidu trends</title><author>Nan, Yongqing ; Gao, Yanyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4b200079667b65e1051df16fd2858180702b418373a791097e7739aad28716663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>Acquired Immunodeficiency Syndrome - epidemiology</topic><topic>AIDS</topic><topic>AIDS (Disease)</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Biology and Life Sciences</topic><topic>China</topic><topic>Computer and Information Sciences</topic><topic>Data management</topic><topic>Epidemics</topic><topic>Epidemics - statistics &amp; numerical data</topic><topic>Fatalities</topic><topic>Forecasting</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Internet</topic><topic>Learning algorithms</topic><topic>Learning theory</topic><topic>Machine Learning</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Neural networks</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Prevalence studies (Epidemiology)</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Search engines</topic><topic>Sentinel surveillance</topic><topic>Surveillance</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nan, Yongqing</creatorcontrib><creatorcontrib>Gao, Yanyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nan, Yongqing</au><au>Gao, Yanyan</au><au>Lau, Eric HY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning method to monitor China's AIDS epidemics with data from Baidu trends</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-07-11</date><risdate>2018</risdate><volume>13</volume><issue>7</issue><spage>e0199697</spage><epage>e0199697</epage><pages>e0199697-e0199697</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>AIDS is a worrying public health issue in China and lacks timely and effective surveillance. With the diffusion and adoption of the Internet, the 'big data' aggregated from Internet search engines, which contain users' information on the concern or reality of their health status, provide a new opportunity for AIDS surveillance. This paper uses search engine data to monitor and forecast AIDS in China. A machine learning method, artificial neural networks (ANNs), is used to forecast AIDS incidences and deaths. Search trend data related to AIDS from the largest Chinese search engine, Baidu.com, are collected and selected as the input variables of ANNs, and officially reported actual AIDS incidences and deaths are used as the output variable. Three criteria, the mean absolute percentage error, the root mean squared percentage error, and the index of agreement, are used to test the forecasting performance of the ANN method. Based on the monthly time series data from January 2011 to June 2017, this article finds that, under the three criteria, the ANN method can lead to satisfactory forecasting of AIDS incidences and deaths, regardless of the change in the number of search queries. Despite the inability to self-detect HIV/AIDS through online searching, Internet-based data should be adopted as a timely, cost-effective complement to a traditional AIDS surveillance system.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29995920</pmid><doi>10.1371/journal.pone.0199697</doi><tpages>e0199697</tpages><orcidid>https://orcid.org/0000-0003-0326-504X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-07, Vol.13 (7), p.e0199697-e0199697
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2068338766
source Publicly Available Content Database; PubMed Central
subjects Acquired immune deficiency syndrome
Acquired Immunodeficiency Syndrome - epidemiology
AIDS
AIDS (Disease)
Analysis
Artificial neural networks
Biology and Life Sciences
China
Computer and Information Sciences
Data management
Epidemics
Epidemics - statistics & numerical data
Fatalities
Forecasting
HIV
Human immunodeficiency virus
Humans
Internet
Learning algorithms
Learning theory
Machine Learning
Medicine and Health Sciences
Methods
Neural networks
People and Places
Physical Sciences
Prevalence studies (Epidemiology)
Public health
Research and Analysis Methods
Search engines
Sentinel surveillance
Surveillance
Trends
title A machine learning method to monitor China's AIDS epidemics with data from Baidu trends
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20method%20to%20monitor%20China's%20AIDS%20epidemics%20with%20data%20from%20Baidu%20trends&rft.jtitle=PloS%20one&rft.au=Nan,%20Yongqing&rft.date=2018-07-11&rft.volume=13&rft.issue=7&rft.spage=e0199697&rft.epage=e0199697&rft.pages=e0199697-e0199697&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0199697&rft_dat=%3Cgale_plos_%3EA546243501%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-4b200079667b65e1051df16fd2858180702b418373a791097e7739aad28716663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2068338766&rft_id=info:pmid/29995920&rft_galeid=A546243501&rfr_iscdi=true