Loading…
Symbolic estrangement or symbolic integration of numerals with quantities: Methodological pitfalls and a possible solution
Previous studies, which examined whether symbolic and non-symbolic quantity representations are processed by two independent systems or by one common system, reached contradicting findings, possibly due to methodological differences. Indeed, some researchers advocate the two systems approach, based...
Saved in:
Published in: | PloS one 2018-07, Vol.13 (7), p.e0200808-e0200808 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous studies, which examined whether symbolic and non-symbolic quantity representations are processed by two independent systems or by one common system, reached contradicting findings, possibly due to methodological differences. Indeed, some researchers advocate the two systems approach, based on the presence of notation-specific switch cost in conditions where adults have to compare pairs of symbolic and non-symbolic quantities, in combination with the absence of such a cost in conditions containing quantities of the same notation. However, other researchers used matching instructions, and reported a facilitation in the mixed notation conditions, suggesting that the two systems are automatically integrated. In the current study, we conducted three experiments, in which we examined the existence of two separate quantity systems, but we used various experimental manipulations (e.g., task instructions, presentation order) to unravel the previous inconsistent findings. In Experiment 1, we investigated the role of task instructions by presenting participants with pure and mixed notation trials with both comparison and matching tasks. In Experiment 2, we tested the role of blocked and randomized presentation order for the pure and mixed trials. Our data showed that cost for switching between the symbolic and non-symbolic quantities is present, but is prone to a certain methodological drawback: when the differences between the processing times for two sequentially presented stimuli of different notations are not taken into account, this masks the cost for switching between the two systems. To overcome this problem, in Experiment 3 we used an audio-visual paradigm. Overall, our results provide further evidence for the existence of distinct quantity representations, independently of task instructions or presentation order. Additionally, considering this methodological pitfall we argue that the audio-visual paradigm is better suited when investigating the integration between symbolic and non- symbolic quantities. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0200808 |