Loading…

Customer mobility signatures and financial indicators as predictors in product recommendation

The rapid growth of mobile payment and geo-aware systems as well as the resulting emergence of Big Data present opportunities to explore individual consuming patterns across space and time. Here we analyze a one-year transaction dataset of a leading commercial bank to understand to what extent custo...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-07, Vol.13 (7), p.e0201197-e0201197
Main Authors: Urkup, Cagan, Bozkaya, Burcin, Salman, F Sibel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid growth of mobile payment and geo-aware systems as well as the resulting emergence of Big Data present opportunities to explore individual consuming patterns across space and time. Here we analyze a one-year transaction dataset of a leading commercial bank to understand to what extent customer mobility behavior and financial indicators can predict the use of a target product, namely the Individual Consumer Loan product. After data preprocessing, we generate 13 datasets covering different time intervals and feature groups, and test combinations of 3 feature selection methods and 10 classification algorithms to determine, for each dataset, the best feature selection method and the most influential features, and the best classification algorithm. We observe the importance of spatio-temporal mobility features and financial features, in addition to demography, in predicting the use of this exemplary product with high accuracy (AUC = 0.942). Finally, we analyze the classification results and report on most interesting customer characteristics and product usage implications. Our findings can be used to potentially increase the success rates of product recommendation systems.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0201197