Loading…
Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro
Prokaryotic argonautes are a unique class of nucleic acid-guided endonucleases putatively involved in cellular defense against foreign genetic elements. While their eukaryotic homologs and Cas protein counterparts require single-stranded RNAs as guides, some prokaryotic argonautes are able to utiliz...
Saved in:
Published in: | PloS one 2018-08, Vol.13 (8), p.e0203073-e0203073 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prokaryotic argonautes are a unique class of nucleic acid-guided endonucleases putatively involved in cellular defense against foreign genetic elements. While their eukaryotic homologs and Cas protein counterparts require single-stranded RNAs as guides, some prokaryotic argonautes are able to utilize short single-stranded DNAs as guides for sequence-specific endonuclease activity. Many complications currently prevent the use of prokaryotic argonautes for in vivo gene-editing applications; however, they do exhibit potential as a new class of in vitro molecular tools if certain challenges can be overcome, specifically the limitations on substrate accessibility which leads to unequal levels of activity across a broad palate of substrates and the inability to act on double-stranded DNA substrates. Here we demonstrate the use of accessory factors, including thermostable single-stranded DNA binding proteins and UvrD-like helicase, in conjunction with prokaryotic argonautes to significantly improve enzymatic activity and enable functionality with a broader range of substrates, including linear double-stranded DNA substrates. We also demonstrate the use of Thermus thermophilus argonaute with accessory factors as a programmable restriction enzyme to generate long, unique single-stranded overhangs from linear double-stranded substrates compatible with downstream ligation. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0203073 |