Loading…

Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage

Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization....

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-10, Vol.13 (10), p.e0204060-e0204060
Main Authors: Dhall, Sandeep, Sathyamoorthy, Malathi, Kuang, Jin-Qiang, Hoffman, Tyler, Moorman, Matthew, Lerch, Anne, Jacob, Vimal, Sinclair, Steven Michael, Danilkovitch, Alla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-bc6443b03c1f7a6b20c5bdd9d28dd8143256e1de674d66534bd7ba7019c7180f3
cites cdi_FETCH-LOGICAL-c692t-bc6443b03c1f7a6b20c5bdd9d28dd8143256e1de674d66534bd7ba7019c7180f3
container_end_page e0204060
container_issue 10
container_start_page e0204060
container_title PloS one
container_volume 13
creator Dhall, Sandeep
Sathyamoorthy, Malathi
Kuang, Jin-Qiang
Hoffman, Tyler
Moorman, Matthew
Lerch, Anne
Jacob, Vimal
Sinclair, Steven Michael
Danilkovitch, Alla
description Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.
doi_str_mv 10.1371/journal.pone.0204060
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2115719746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557683680</galeid><doaj_id>oai_doaj_org_article_f5c3bb37fe6c42a09873024e7c45eaad</doaj_id><sourcerecordid>A557683680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bc6443b03c1f7a6b20c5bdd9d28dd8143256e1de674d66534bd7ba7019c7180f3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTJu2NsCx-DCys-HUb0uR0JkummU3S0b3xt5vudJapzIW00JI873ua9_Rk2XOM5phw_O7a9b6Tdr5xHcxRgShi6EF2imtSzFiByMOD95PsSQjXCJWkYuxxdkJQwStEi9PszxfvNuCjgZC7Nt8a2VjI7a3beAjgt6Bzue6M63LpIYeb3mylhS7m0e1h5Y_Qv0xc5XGVdl23hc5Ap2AoINeNGeQhOi-X8DR71Eob4Nn4PMt-fPzw_eLz7PLq0-Li_HKmWF3EWaMYpaRBROGWS9YUSJWN1rUuKq0rTElRMsAaGKeasZLQRvNGcoRrxXGFWnKWvdz5bqwLYowuiALjkuOaU5aIxY7QTl6LjTdr6W-Fk0bcLTi_FDLFpCyItlSkaQhvgSlaSFRXPAVKgStagpQ6eb0fq_XNGrRKB_bSTkynO51ZiaXbCoZZhQueDN6MBt7d9BCiWJugwFrZgevvvpulu2YD-uof9PjpRmqZuidM17pUVw2m4rwsOasIq1Ci5keodGlYm9RIaE1anwjeTgSJifA7LmUfglh8-_r_7NXPKfv6gF2BtHEVnO1j-rXCFKQ7UHkXgof2PmSMxDAm-zTEMCZiHJMke3HYoHvRfi7IX8mrD60</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115719746</pqid></control><display><type>article</type><title>Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Dhall, Sandeep ; Sathyamoorthy, Malathi ; Kuang, Jin-Qiang ; Hoffman, Tyler ; Moorman, Matthew ; Lerch, Anne ; Jacob, Vimal ; Sinclair, Steven Michael ; Danilkovitch, Alla</creator><contributor>Ljubimov, Alexander V.</contributor><creatorcontrib>Dhall, Sandeep ; Sathyamoorthy, Malathi ; Kuang, Jin-Qiang ; Hoffman, Tyler ; Moorman, Matthew ; Lerch, Anne ; Jacob, Vimal ; Sinclair, Steven Michael ; Danilkovitch, Alla ; Ljubimov, Alexander V.</creatorcontrib><description>Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0204060</identifier><identifier>PMID: 30278042</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amnion ; Amniotic membrane ; Angiogenesis ; Animal models ; Antiinfectives and antibacterials ; Biology and Life Sciences ; Care and treatment ; Clinical outcomes ; Clinical trials ; Cryopreservation ; Diabetes ; Diabetes mellitus ; Equivalence ; Extracellular matrix ; Granulation ; Growth factors ; Hypoxia ; Inflammation ; Low temperature ; Medical research ; Medicine and Health Sciences ; Mesenchyme ; Methods ; Microorganisms ; Properties ; Properties (attributes) ; Research and Analysis Methods ; Secretion ; Shelf life ; Stem cell transplantation ; Stem cells ; Storage ; Structure ; Structure-function relationships ; Temperature requirements ; Tumor necrosis factor-α ; Vascular endothelial growth factor ; Wounds</subject><ispartof>PloS one, 2018-10, Vol.13 (10), p.e0204060-e0204060</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Dhall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Dhall et al 2018 Dhall et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bc6443b03c1f7a6b20c5bdd9d28dd8143256e1de674d66534bd7ba7019c7180f3</citedby><cites>FETCH-LOGICAL-c692t-bc6443b03c1f7a6b20c5bdd9d28dd8143256e1de674d66534bd7ba7019c7180f3</cites><orcidid>0000-0002-6910-1921 ; 0000-0001-8236-9546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2115719746/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2115719746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ljubimov, Alexander V.</contributor><creatorcontrib>Dhall, Sandeep</creatorcontrib><creatorcontrib>Sathyamoorthy, Malathi</creatorcontrib><creatorcontrib>Kuang, Jin-Qiang</creatorcontrib><creatorcontrib>Hoffman, Tyler</creatorcontrib><creatorcontrib>Moorman, Matthew</creatorcontrib><creatorcontrib>Lerch, Anne</creatorcontrib><creatorcontrib>Jacob, Vimal</creatorcontrib><creatorcontrib>Sinclair, Steven Michael</creatorcontrib><creatorcontrib>Danilkovitch, Alla</creatorcontrib><title>Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.</description><subject>Amnion</subject><subject>Amniotic membrane</subject><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Antiinfectives and antibacterials</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Cryopreservation</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Equivalence</subject><subject>Extracellular matrix</subject><subject>Granulation</subject><subject>Growth factors</subject><subject>Hypoxia</subject><subject>Inflammation</subject><subject>Low temperature</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchyme</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Properties</subject><subject>Properties (attributes)</subject><subject>Research and Analysis Methods</subject><subject>Secretion</subject><subject>Shelf life</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Storage</subject><subject>Structure</subject><subject>Structure-function relationships</subject><subject>Temperature requirements</subject><subject>Tumor necrosis factor-α</subject><subject>Vascular endothelial growth factor</subject><subject>Wounds</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmTJu2NsCx-DCys-HUb0uR0JkummU3S0b3xt5vudJapzIW00JI873ua9_Rk2XOM5phw_O7a9b6Tdr5xHcxRgShi6EF2imtSzFiByMOD95PsSQjXCJWkYuxxdkJQwStEi9PszxfvNuCjgZC7Nt8a2VjI7a3beAjgt6Bzue6M63LpIYeb3mylhS7m0e1h5Y_Qv0xc5XGVdl23hc5Ap2AoINeNGeQhOi-X8DR71Eob4Nn4PMt-fPzw_eLz7PLq0-Li_HKmWF3EWaMYpaRBROGWS9YUSJWN1rUuKq0rTElRMsAaGKeasZLQRvNGcoRrxXGFWnKWvdz5bqwLYowuiALjkuOaU5aIxY7QTl6LjTdr6W-Fk0bcLTi_FDLFpCyItlSkaQhvgSlaSFRXPAVKgStagpQ6eb0fq_XNGrRKB_bSTkynO51ZiaXbCoZZhQueDN6MBt7d9BCiWJugwFrZgevvvpulu2YD-uof9PjpRmqZuidM17pUVw2m4rwsOasIq1Ci5keodGlYm9RIaE1anwjeTgSJifA7LmUfglh8-_r_7NXPKfv6gF2BtHEVnO1j-rXCFKQ7UHkXgof2PmSMxDAm-zTEMCZiHJMke3HYoHvRfi7IX8mrD60</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Dhall, Sandeep</creator><creator>Sathyamoorthy, Malathi</creator><creator>Kuang, Jin-Qiang</creator><creator>Hoffman, Tyler</creator><creator>Moorman, Matthew</creator><creator>Lerch, Anne</creator><creator>Jacob, Vimal</creator><creator>Sinclair, Steven Michael</creator><creator>Danilkovitch, Alla</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6910-1921</orcidid><orcidid>https://orcid.org/0000-0001-8236-9546</orcidid></search><sort><creationdate>20181002</creationdate><title>Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage</title><author>Dhall, Sandeep ; Sathyamoorthy, Malathi ; Kuang, Jin-Qiang ; Hoffman, Tyler ; Moorman, Matthew ; Lerch, Anne ; Jacob, Vimal ; Sinclair, Steven Michael ; Danilkovitch, Alla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bc6443b03c1f7a6b20c5bdd9d28dd8143256e1de674d66534bd7ba7019c7180f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amnion</topic><topic>Amniotic membrane</topic><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Antiinfectives and antibacterials</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Cryopreservation</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Equivalence</topic><topic>Extracellular matrix</topic><topic>Granulation</topic><topic>Growth factors</topic><topic>Hypoxia</topic><topic>Inflammation</topic><topic>Low temperature</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchyme</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Properties</topic><topic>Properties (attributes)</topic><topic>Research and Analysis Methods</topic><topic>Secretion</topic><topic>Shelf life</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Storage</topic><topic>Structure</topic><topic>Structure-function relationships</topic><topic>Temperature requirements</topic><topic>Tumor necrosis factor-α</topic><topic>Vascular endothelial growth factor</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhall, Sandeep</creatorcontrib><creatorcontrib>Sathyamoorthy, Malathi</creatorcontrib><creatorcontrib>Kuang, Jin-Qiang</creatorcontrib><creatorcontrib>Hoffman, Tyler</creatorcontrib><creatorcontrib>Moorman, Matthew</creatorcontrib><creatorcontrib>Lerch, Anne</creatorcontrib><creatorcontrib>Jacob, Vimal</creatorcontrib><creatorcontrib>Sinclair, Steven Michael</creatorcontrib><creatorcontrib>Danilkovitch, Alla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhall, Sandeep</au><au>Sathyamoorthy, Malathi</au><au>Kuang, Jin-Qiang</au><au>Hoffman, Tyler</au><au>Moorman, Matthew</au><au>Lerch, Anne</au><au>Jacob, Vimal</au><au>Sinclair, Steven Michael</au><au>Danilkovitch, Alla</au><au>Ljubimov, Alexander V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-10-02</date><risdate>2018</risdate><volume>13</volume><issue>10</issue><spage>e0204060</spage><epage>e0204060</epage><pages>e0204060-e0204060</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30278042</pmid><doi>10.1371/journal.pone.0204060</doi><tpages>e0204060</tpages><orcidid>https://orcid.org/0000-0002-6910-1921</orcidid><orcidid>https://orcid.org/0000-0001-8236-9546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-10, Vol.13 (10), p.e0204060-e0204060
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2115719746
source PubMed (Medline); Publicly Available Content Database
subjects Amnion
Amniotic membrane
Angiogenesis
Animal models
Antiinfectives and antibacterials
Biology and Life Sciences
Care and treatment
Clinical outcomes
Clinical trials
Cryopreservation
Diabetes
Diabetes mellitus
Equivalence
Extracellular matrix
Granulation
Growth factors
Hypoxia
Inflammation
Low temperature
Medical research
Medicine and Health Sciences
Mesenchyme
Methods
Microorganisms
Properties
Properties (attributes)
Research and Analysis Methods
Secretion
Shelf life
Stem cell transplantation
Stem cells
Storage
Structure
Structure-function relationships
Temperature requirements
Tumor necrosis factor-α
Vascular endothelial growth factor
Wounds
title Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20viable%20lyopreserved%20amnion%20are%20equivalent%20to%20viable%20cryopreserved%20amnion%20with%20the%20convenience%20of%20ambient%20storage&rft.jtitle=PloS%20one&rft.au=Dhall,%20Sandeep&rft.date=2018-10-02&rft.volume=13&rft.issue=10&rft.spage=e0204060&rft.epage=e0204060&rft.pages=e0204060-e0204060&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0204060&rft_dat=%3Cgale_plos_%3EA557683680%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-bc6443b03c1f7a6b20c5bdd9d28dd8143256e1de674d66534bd7ba7019c7180f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115719746&rft_id=info:pmid/30278042&rft_galeid=A557683680&rfr_iscdi=true