Loading…

Implications of the expression of Enterococcus faecalis citrate fermentation genes during infection

Citrate is an ubiquitous compound in nature. However, citrate fermentation is present only in a few pathogenic or nonpathogenic microorganisms. The citrate fermentation pathway includes a citrate transporter, a citrate lyase complex, an oxaloacetate decarboxylase and a regulatory system. Enterococcu...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-10, Vol.13 (10), p.e0205787-e0205787
Main Authors: Martino, Gabriela P, Perez, Cristian E, Magni, Christian, Blancato, Víctor S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Citrate is an ubiquitous compound in nature. However, citrate fermentation is present only in a few pathogenic or nonpathogenic microorganisms. The citrate fermentation pathway includes a citrate transporter, a citrate lyase complex, an oxaloacetate decarboxylase and a regulatory system. Enterococcus faecalis is commonly present in the gastro-intestinal microbiota of warm-blooded animals and insect guts. These bacteria can also cause infection and disease in immunocompromised individuals. In the present study, we performed whole genome analysis in Enterococcus strains finding that the complete citrate pathway is present in all of the E. faecalis strains isolated from such diverse habitats as animals, hospitals, water, milk, plants, insects, cheese, etc. These results indicate the importance of this metabolic preservation for persistence and growth of E. faecalis in different niches. We also analyzed the role of citrate metabolism in the E. faecalis pathogenicity. We found that an E. faecalis citrate fermentation-deficient strain was less pathogenic for Galleria mellonella larvae than the wild type. Furthermore, strains with deletions in the oxaloacetate decarboxylase subunits or in the α-acetolactate synthase resulted also less virulent than the wild type strain. We also observed that citrate promoters are induced in blood, urine and also in the hemolymph of G. mellonella. In addition, we showed that citrate fermentation allows E. faecalis to grow better in blood, urine and G. mellonella. The results presented here clearly indicate that citrate fermentation plays an important role in E. faecalis opportunistic pathogenic behavior.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0205787