Loading…
Varying redox potential affects P release from stream bank sediments
Sediments in streams that drain agricultural watersheds may be sinks that can adsorb P from the stream or sources that can release P to the stream. Sediment characteristics and environmental factors, including the oxidation-reduction (redox) potential of the water associated with the sediment, deter...
Saved in:
Published in: | PloS one 2018-12, Vol.13 (12), p.e0209208-e0209208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sediments in streams that drain agricultural watersheds may be sinks that can adsorb P from the stream or sources that can release P to the stream. Sediment characteristics and environmental factors, including the oxidation-reduction (redox) potential of the water associated with the sediment, determine whether P will be adsorbed or released by the sediment. We investigated P adsorption and release by four sediments [three Holocene-age sediments (Camp Creek, Roberts Creek and Gunder) as well as Pre-Illinoian-age Till] that occur in Walnut Creek, a second-order stream in Jasper County, Iowa, that is representative of many small streams in the glaciated upper Midwest of the US. The effects of two redox potentials on phosphorus buffering capacity (PBC) and equilibrium phosphorus concentration (EPC) were evaluated in batch adsorption experiments. We also simulated aerobic and anerobic conditions over a 24-day period and measured solution-phase P concentrations in stirred systems where the sediments were isolated from the water by dialysis tubing. The batch experiment indicated that the EPCs of the three Holocene-age sediments were similar to one another and increased with decreasing redox potential. In the stirred flow reactors, more dissolved P was released from the Camp Creek and Roberts Creek sediments under anaerobic conditions than from the other sediments. This observation suggests that these two sediments, which are younger and higher in the stratigraphic sequence, are more likely to be P sources in suboxic settings. The P buffering capacity was greatest in the till. Where it is in contact with the stream water, the till is likely to serve as an adsorbing sink for P in the water column. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0209208 |