Loading…

Transcortical photothrombotic pyramidotomy model with persistent motor deficits

Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We u...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2018-12, Vol.13 (12), p.e0204842-e0204842
Main Authors: Song, Hanlim, Cho, Jongwook, Lee, Sunwoo, Park, Ji-Young, Choi, Byung-Moon, Kim, Min Sun, Kim, Weon Gyeong, Lee, Min-Cheol, Kim, Hyoung-Ihl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3
cites cdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3
container_end_page e0204842
container_issue 12
container_start_page e0204842
container_title PloS one
container_volume 13
creator Song, Hanlim
Cho, Jongwook
Lee, Sunwoo
Park, Ji-Young
Choi, Byung-Moon
Kim, Min Sun
Kim, Weon Gyeong
Lee, Min-Cheol
Kim, Hyoung-Ihl
description Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p < 0.001, FDR q < 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p < 0.001, FDR q < 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.
doi_str_mv 10.1371/journal.pone.0204842
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2161934316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_851a92a55dbd493297051acde1702f3c</doaj_id><sourcerecordid>2161934316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIlsI_QBCJSy-7-Dv2BQlVFCpV6qWcLcd-7nqVxMH2gvbf4-2mVYs42RrPG888TdO8x2iNaYc_b-MuTWZYz3GCNSKISUZeNKdYUbISBNGXT-4nzZuctwhxKoV43ZxQxJUQTJ42N7fJTNnGVII1QztvYollk-LYx4q08z6ZMbgKjvt2jA6G9k8om3aGlEMuMJWKlphaBz7YUPLb5pU3Q4Z3y3nW_Lz8dnvxY3V98_3q4uv1ynIiysor7j1SPYB1HgTvO4E7jBQwrDCTIKVy3FEDRgpmCSOeOWm8NFKCtxjoWfPxqDsPMetlF1kTLGpoRrGojKsjw0Wz1XMKo0l7HU3Q90BMd9ocUg-gJcdGEcO56x2rO1Mdqoh1gDtEPLVV68vy264fwdmaO5nhmejzlyls9F38rQXFhLCDmfNFIMVfO8hFjyFbGAYzQdzd-yZMcdyxSv30D_X_6diRZVPMOYF_NIORPvTjYUof-qGXftSxD0-DPA49FIL-BSyMu3g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161934316</pqid></control><display><type>article</type><title>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Song, Hanlim ; Cho, Jongwook ; Lee, Sunwoo ; Park, Ji-Young ; Choi, Byung-Moon ; Kim, Min Sun ; Kim, Weon Gyeong ; Lee, Min-Cheol ; Kim, Hyoung-Ihl</creator><contributor>Minnerup, Jens</contributor><creatorcontrib>Song, Hanlim ; Cho, Jongwook ; Lee, Sunwoo ; Park, Ji-Young ; Choi, Byung-Moon ; Kim, Min Sun ; Kim, Weon Gyeong ; Lee, Min-Cheol ; Kim, Hyoung-Ihl ; Minnerup, Jens</creatorcontrib><description>Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p &lt; 0.001, FDR q &lt; 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p &lt; 0.001, FDR q &lt; 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0204842</identifier><identifier>PMID: 30596648</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Auditory Cortex - diagnostic imaging ; Auditory Cortex - physiopathology ; Biology and Life Sciences ; Brain research ; Cerebellum ; Cortex (auditory) ; Cortex (somatosensory) ; Disease Models, Animal ; Engineering ; Fibers ; Fluorodeoxyglucose F18 - pharmacology ; Glucose ; Glucose metabolism ; Hemispheres ; Male ; Medical research ; Medicine and Health Sciences ; Metabolism ; Mortality ; Motor Cortex - diagnostic imaging ; Motor Cortex - physiopathology ; Motor Disorders - diagnostic imaging ; Motor Disorders - physiopathology ; Motor Neurons ; Motors ; Neuroimaging ; Optical fibers ; Physical Sciences ; Positron-Emission Tomography ; Preservation ; Pyramidal tracts ; Rats ; Rats, Sprague-Dawley ; Research and Analysis Methods ; Respiration ; Respiratory function ; Rodents ; Somatosensory cortex ; Spinal cord ; Veins &amp; arteries</subject><ispartof>PloS one, 2018-12, Vol.13 (12), p.e0204842-e0204842</ispartof><rights>2018 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Song et al 2018 Song et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</citedby><cites>FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</cites><orcidid>0000-0001-6701-4296 ; 0000-0003-3720-1044 ; 0000-0001-7604-1595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2161934316/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2161934316?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30596648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Minnerup, Jens</contributor><creatorcontrib>Song, Hanlim</creatorcontrib><creatorcontrib>Cho, Jongwook</creatorcontrib><creatorcontrib>Lee, Sunwoo</creatorcontrib><creatorcontrib>Park, Ji-Young</creatorcontrib><creatorcontrib>Choi, Byung-Moon</creatorcontrib><creatorcontrib>Kim, Min Sun</creatorcontrib><creatorcontrib>Kim, Weon Gyeong</creatorcontrib><creatorcontrib>Lee, Min-Cheol</creatorcontrib><creatorcontrib>Kim, Hyoung-Ihl</creatorcontrib><title>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p &lt; 0.001, FDR q &lt; 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p &lt; 0.001, FDR q &lt; 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.</description><subject>Animals</subject><subject>Auditory Cortex - diagnostic imaging</subject><subject>Auditory Cortex - physiopathology</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Cerebellum</subject><subject>Cortex (auditory)</subject><subject>Cortex (somatosensory)</subject><subject>Disease Models, Animal</subject><subject>Engineering</subject><subject>Fibers</subject><subject>Fluorodeoxyglucose F18 - pharmacology</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hemispheres</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mortality</subject><subject>Motor Cortex - diagnostic imaging</subject><subject>Motor Cortex - physiopathology</subject><subject>Motor Disorders - diagnostic imaging</subject><subject>Motor Disorders - physiopathology</subject><subject>Motor Neurons</subject><subject>Motors</subject><subject>Neuroimaging</subject><subject>Optical fibers</subject><subject>Physical Sciences</subject><subject>Positron-Emission Tomography</subject><subject>Preservation</subject><subject>Pyramidal tracts</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Research and Analysis Methods</subject><subject>Respiration</subject><subject>Respiratory function</subject><subject>Rodents</subject><subject>Somatosensory cortex</subject><subject>Spinal cord</subject><subject>Veins &amp; arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIlsI_QBCJSy-7-Dv2BQlVFCpV6qWcLcd-7nqVxMH2gvbf4-2mVYs42RrPG888TdO8x2iNaYc_b-MuTWZYz3GCNSKISUZeNKdYUbISBNGXT-4nzZuctwhxKoV43ZxQxJUQTJ42N7fJTNnGVII1QztvYollk-LYx4q08z6ZMbgKjvt2jA6G9k8om3aGlEMuMJWKlphaBz7YUPLb5pU3Q4Z3y3nW_Lz8dnvxY3V98_3q4uv1ynIiysor7j1SPYB1HgTvO4E7jBQwrDCTIKVy3FEDRgpmCSOeOWm8NFKCtxjoWfPxqDsPMetlF1kTLGpoRrGojKsjw0Wz1XMKo0l7HU3Q90BMd9ocUg-gJcdGEcO56x2rO1Mdqoh1gDtEPLVV68vy264fwdmaO5nhmejzlyls9F38rQXFhLCDmfNFIMVfO8hFjyFbGAYzQdzd-yZMcdyxSv30D_X_6diRZVPMOYF_NIORPvTjYUof-qGXftSxD0-DPA49FIL-BSyMu3g</recordid><startdate>20181231</startdate><enddate>20181231</enddate><creator>Song, Hanlim</creator><creator>Cho, Jongwook</creator><creator>Lee, Sunwoo</creator><creator>Park, Ji-Young</creator><creator>Choi, Byung-Moon</creator><creator>Kim, Min Sun</creator><creator>Kim, Weon Gyeong</creator><creator>Lee, Min-Cheol</creator><creator>Kim, Hyoung-Ihl</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6701-4296</orcidid><orcidid>https://orcid.org/0000-0003-3720-1044</orcidid><orcidid>https://orcid.org/0000-0001-7604-1595</orcidid></search><sort><creationdate>20181231</creationdate><title>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</title><author>Song, Hanlim ; Cho, Jongwook ; Lee, Sunwoo ; Park, Ji-Young ; Choi, Byung-Moon ; Kim, Min Sun ; Kim, Weon Gyeong ; Lee, Min-Cheol ; Kim, Hyoung-Ihl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Auditory Cortex - diagnostic imaging</topic><topic>Auditory Cortex - physiopathology</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Cerebellum</topic><topic>Cortex (auditory)</topic><topic>Cortex (somatosensory)</topic><topic>Disease Models, Animal</topic><topic>Engineering</topic><topic>Fibers</topic><topic>Fluorodeoxyglucose F18 - pharmacology</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hemispheres</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mortality</topic><topic>Motor Cortex - diagnostic imaging</topic><topic>Motor Cortex - physiopathology</topic><topic>Motor Disorders - diagnostic imaging</topic><topic>Motor Disorders - physiopathology</topic><topic>Motor Neurons</topic><topic>Motors</topic><topic>Neuroimaging</topic><topic>Optical fibers</topic><topic>Physical Sciences</topic><topic>Positron-Emission Tomography</topic><topic>Preservation</topic><topic>Pyramidal tracts</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Research and Analysis Methods</topic><topic>Respiration</topic><topic>Respiratory function</topic><topic>Rodents</topic><topic>Somatosensory cortex</topic><topic>Spinal cord</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Hanlim</creatorcontrib><creatorcontrib>Cho, Jongwook</creatorcontrib><creatorcontrib>Lee, Sunwoo</creatorcontrib><creatorcontrib>Park, Ji-Young</creatorcontrib><creatorcontrib>Choi, Byung-Moon</creatorcontrib><creatorcontrib>Kim, Min Sun</creatorcontrib><creatorcontrib>Kim, Weon Gyeong</creatorcontrib><creatorcontrib>Lee, Min-Cheol</creatorcontrib><creatorcontrib>Kim, Hyoung-Ihl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Hanlim</au><au>Cho, Jongwook</au><au>Lee, Sunwoo</au><au>Park, Ji-Young</au><au>Choi, Byung-Moon</au><au>Kim, Min Sun</au><au>Kim, Weon Gyeong</au><au>Lee, Min-Cheol</au><au>Kim, Hyoung-Ihl</au><au>Minnerup, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-12-31</date><risdate>2018</risdate><volume>13</volume><issue>12</issue><spage>e0204842</spage><epage>e0204842</epage><pages>e0204842-e0204842</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p &lt; 0.001, FDR q &lt; 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p &lt; 0.001, FDR q &lt; 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30596648</pmid><doi>10.1371/journal.pone.0204842</doi><orcidid>https://orcid.org/0000-0001-6701-4296</orcidid><orcidid>https://orcid.org/0000-0003-3720-1044</orcidid><orcidid>https://orcid.org/0000-0001-7604-1595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-12, Vol.13 (12), p.e0204842-e0204842
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2161934316
source Access via ProQuest (Open Access); PubMed Central
subjects Animals
Auditory Cortex - diagnostic imaging
Auditory Cortex - physiopathology
Biology and Life Sciences
Brain research
Cerebellum
Cortex (auditory)
Cortex (somatosensory)
Disease Models, Animal
Engineering
Fibers
Fluorodeoxyglucose F18 - pharmacology
Glucose
Glucose metabolism
Hemispheres
Male
Medical research
Medicine and Health Sciences
Metabolism
Mortality
Motor Cortex - diagnostic imaging
Motor Cortex - physiopathology
Motor Disorders - diagnostic imaging
Motor Disorders - physiopathology
Motor Neurons
Motors
Neuroimaging
Optical fibers
Physical Sciences
Positron-Emission Tomography
Preservation
Pyramidal tracts
Rats
Rats, Sprague-Dawley
Research and Analysis Methods
Respiration
Respiratory function
Rodents
Somatosensory cortex
Spinal cord
Veins & arteries
title Transcortical photothrombotic pyramidotomy model with persistent motor deficits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcortical%20photothrombotic%20pyramidotomy%20model%20with%20persistent%20motor%20deficits&rft.jtitle=PloS%20one&rft.au=Song,%20Hanlim&rft.date=2018-12-31&rft.volume=13&rft.issue=12&rft.spage=e0204842&rft.epage=e0204842&rft.pages=e0204842-e0204842&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0204842&rft_dat=%3Cproquest_plos_%3E2161934316%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161934316&rft_id=info:pmid/30596648&rfr_iscdi=true