Loading…
Transcortical photothrombotic pyramidotomy model with persistent motor deficits
Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We u...
Saved in:
Published in: | PloS one 2018-12, Vol.13 (12), p.e0204842-e0204842 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3 |
container_end_page | e0204842 |
container_issue | 12 |
container_start_page | e0204842 |
container_title | PloS one |
container_volume | 13 |
creator | Song, Hanlim Cho, Jongwook Lee, Sunwoo Park, Ji-Young Choi, Byung-Moon Kim, Min Sun Kim, Weon Gyeong Lee, Min-Cheol Kim, Hyoung-Ihl |
description | Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p < 0.001, FDR q < 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p < 0.001, FDR q < 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits. |
doi_str_mv | 10.1371/journal.pone.0204842 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2161934316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_851a92a55dbd493297051acde1702f3c</doaj_id><sourcerecordid>2161934316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</originalsourceid><addsrcrecordid>eNptUk1v1DAUjBCIlsI_QBCJSy-7-Dv2BQlVFCpV6qWcLcd-7nqVxMH2gvbf4-2mVYs42RrPG888TdO8x2iNaYc_b-MuTWZYz3GCNSKISUZeNKdYUbISBNGXT-4nzZuctwhxKoV43ZxQxJUQTJ42N7fJTNnGVII1QztvYollk-LYx4q08z6ZMbgKjvt2jA6G9k8om3aGlEMuMJWKlphaBz7YUPLb5pU3Q4Z3y3nW_Lz8dnvxY3V98_3q4uv1ynIiysor7j1SPYB1HgTvO4E7jBQwrDCTIKVy3FEDRgpmCSOeOWm8NFKCtxjoWfPxqDsPMetlF1kTLGpoRrGojKsjw0Wz1XMKo0l7HU3Q90BMd9ocUg-gJcdGEcO56x2rO1Mdqoh1gDtEPLVV68vy264fwdmaO5nhmejzlyls9F38rQXFhLCDmfNFIMVfO8hFjyFbGAYzQdzd-yZMcdyxSv30D_X_6diRZVPMOYF_NIORPvTjYUof-qGXftSxD0-DPA49FIL-BSyMu3g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161934316</pqid></control><display><type>article</type><title>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Song, Hanlim ; Cho, Jongwook ; Lee, Sunwoo ; Park, Ji-Young ; Choi, Byung-Moon ; Kim, Min Sun ; Kim, Weon Gyeong ; Lee, Min-Cheol ; Kim, Hyoung-Ihl</creator><contributor>Minnerup, Jens</contributor><creatorcontrib>Song, Hanlim ; Cho, Jongwook ; Lee, Sunwoo ; Park, Ji-Young ; Choi, Byung-Moon ; Kim, Min Sun ; Kim, Weon Gyeong ; Lee, Min-Cheol ; Kim, Hyoung-Ihl ; Minnerup, Jens</creatorcontrib><description>Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p < 0.001, FDR q < 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p < 0.001, FDR q < 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0204842</identifier><identifier>PMID: 30596648</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Auditory Cortex - diagnostic imaging ; Auditory Cortex - physiopathology ; Biology and Life Sciences ; Brain research ; Cerebellum ; Cortex (auditory) ; Cortex (somatosensory) ; Disease Models, Animal ; Engineering ; Fibers ; Fluorodeoxyglucose F18 - pharmacology ; Glucose ; Glucose metabolism ; Hemispheres ; Male ; Medical research ; Medicine and Health Sciences ; Metabolism ; Mortality ; Motor Cortex - diagnostic imaging ; Motor Cortex - physiopathology ; Motor Disorders - diagnostic imaging ; Motor Disorders - physiopathology ; Motor Neurons ; Motors ; Neuroimaging ; Optical fibers ; Physical Sciences ; Positron-Emission Tomography ; Preservation ; Pyramidal tracts ; Rats ; Rats, Sprague-Dawley ; Research and Analysis Methods ; Respiration ; Respiratory function ; Rodents ; Somatosensory cortex ; Spinal cord ; Veins & arteries</subject><ispartof>PloS one, 2018-12, Vol.13 (12), p.e0204842-e0204842</ispartof><rights>2018 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Song et al 2018 Song et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</citedby><cites>FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</cites><orcidid>0000-0001-6701-4296 ; 0000-0003-3720-1044 ; 0000-0001-7604-1595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2161934316/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2161934316?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30596648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Minnerup, Jens</contributor><creatorcontrib>Song, Hanlim</creatorcontrib><creatorcontrib>Cho, Jongwook</creatorcontrib><creatorcontrib>Lee, Sunwoo</creatorcontrib><creatorcontrib>Park, Ji-Young</creatorcontrib><creatorcontrib>Choi, Byung-Moon</creatorcontrib><creatorcontrib>Kim, Min Sun</creatorcontrib><creatorcontrib>Kim, Weon Gyeong</creatorcontrib><creatorcontrib>Lee, Min-Cheol</creatorcontrib><creatorcontrib>Kim, Hyoung-Ihl</creatorcontrib><title>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p < 0.001, FDR q < 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p < 0.001, FDR q < 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.</description><subject>Animals</subject><subject>Auditory Cortex - diagnostic imaging</subject><subject>Auditory Cortex - physiopathology</subject><subject>Biology and Life Sciences</subject><subject>Brain research</subject><subject>Cerebellum</subject><subject>Cortex (auditory)</subject><subject>Cortex (somatosensory)</subject><subject>Disease Models, Animal</subject><subject>Engineering</subject><subject>Fibers</subject><subject>Fluorodeoxyglucose F18 - pharmacology</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hemispheres</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mortality</subject><subject>Motor Cortex - diagnostic imaging</subject><subject>Motor Cortex - physiopathology</subject><subject>Motor Disorders - diagnostic imaging</subject><subject>Motor Disorders - physiopathology</subject><subject>Motor Neurons</subject><subject>Motors</subject><subject>Neuroimaging</subject><subject>Optical fibers</subject><subject>Physical Sciences</subject><subject>Positron-Emission Tomography</subject><subject>Preservation</subject><subject>Pyramidal tracts</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Research and Analysis Methods</subject><subject>Respiration</subject><subject>Respiratory function</subject><subject>Rodents</subject><subject>Somatosensory cortex</subject><subject>Spinal cord</subject><subject>Veins & arteries</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAUjBCIlsI_QBCJSy-7-Dv2BQlVFCpV6qWcLcd-7nqVxMH2gvbf4-2mVYs42RrPG888TdO8x2iNaYc_b-MuTWZYz3GCNSKISUZeNKdYUbISBNGXT-4nzZuctwhxKoV43ZxQxJUQTJ42N7fJTNnGVII1QztvYollk-LYx4q08z6ZMbgKjvt2jA6G9k8om3aGlEMuMJWKlphaBz7YUPLb5pU3Q4Z3y3nW_Lz8dnvxY3V98_3q4uv1ynIiysor7j1SPYB1HgTvO4E7jBQwrDCTIKVy3FEDRgpmCSOeOWm8NFKCtxjoWfPxqDsPMetlF1kTLGpoRrGojKsjw0Wz1XMKo0l7HU3Q90BMd9ocUg-gJcdGEcO56x2rO1Mdqoh1gDtEPLVV68vy264fwdmaO5nhmejzlyls9F38rQXFhLCDmfNFIMVfO8hFjyFbGAYzQdzd-yZMcdyxSv30D_X_6diRZVPMOYF_NIORPvTjYUof-qGXftSxD0-DPA49FIL-BSyMu3g</recordid><startdate>20181231</startdate><enddate>20181231</enddate><creator>Song, Hanlim</creator><creator>Cho, Jongwook</creator><creator>Lee, Sunwoo</creator><creator>Park, Ji-Young</creator><creator>Choi, Byung-Moon</creator><creator>Kim, Min Sun</creator><creator>Kim, Weon Gyeong</creator><creator>Lee, Min-Cheol</creator><creator>Kim, Hyoung-Ihl</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6701-4296</orcidid><orcidid>https://orcid.org/0000-0003-3720-1044</orcidid><orcidid>https://orcid.org/0000-0001-7604-1595</orcidid></search><sort><creationdate>20181231</creationdate><title>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</title><author>Song, Hanlim ; Cho, Jongwook ; Lee, Sunwoo ; Park, Ji-Young ; Choi, Byung-Moon ; Kim, Min Sun ; Kim, Weon Gyeong ; Lee, Min-Cheol ; Kim, Hyoung-Ihl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Auditory Cortex - diagnostic imaging</topic><topic>Auditory Cortex - physiopathology</topic><topic>Biology and Life Sciences</topic><topic>Brain research</topic><topic>Cerebellum</topic><topic>Cortex (auditory)</topic><topic>Cortex (somatosensory)</topic><topic>Disease Models, Animal</topic><topic>Engineering</topic><topic>Fibers</topic><topic>Fluorodeoxyglucose F18 - pharmacology</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hemispheres</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mortality</topic><topic>Motor Cortex - diagnostic imaging</topic><topic>Motor Cortex - physiopathology</topic><topic>Motor Disorders - diagnostic imaging</topic><topic>Motor Disorders - physiopathology</topic><topic>Motor Neurons</topic><topic>Motors</topic><topic>Neuroimaging</topic><topic>Optical fibers</topic><topic>Physical Sciences</topic><topic>Positron-Emission Tomography</topic><topic>Preservation</topic><topic>Pyramidal tracts</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Research and Analysis Methods</topic><topic>Respiration</topic><topic>Respiratory function</topic><topic>Rodents</topic><topic>Somatosensory cortex</topic><topic>Spinal cord</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Hanlim</creatorcontrib><creatorcontrib>Cho, Jongwook</creatorcontrib><creatorcontrib>Lee, Sunwoo</creatorcontrib><creatorcontrib>Park, Ji-Young</creatorcontrib><creatorcontrib>Choi, Byung-Moon</creatorcontrib><creatorcontrib>Kim, Min Sun</creatorcontrib><creatorcontrib>Kim, Weon Gyeong</creatorcontrib><creatorcontrib>Lee, Min-Cheol</creatorcontrib><creatorcontrib>Kim, Hyoung-Ihl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Hanlim</au><au>Cho, Jongwook</au><au>Lee, Sunwoo</au><au>Park, Ji-Young</au><au>Choi, Byung-Moon</au><au>Kim, Min Sun</au><au>Kim, Weon Gyeong</au><au>Lee, Min-Cheol</au><au>Kim, Hyoung-Ihl</au><au>Minnerup, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcortical photothrombotic pyramidotomy model with persistent motor deficits</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-12-31</date><risdate>2018</risdate><volume>13</volume><issue>12</issue><spage>e0204842</spage><epage>e0204842</epage><pages>e0204842-e0204842</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p < 0.001, FDR q < 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p < 0.001, FDR q < 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30596648</pmid><doi>10.1371/journal.pone.0204842</doi><orcidid>https://orcid.org/0000-0001-6701-4296</orcidid><orcidid>https://orcid.org/0000-0003-3720-1044</orcidid><orcidid>https://orcid.org/0000-0001-7604-1595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-12, Vol.13 (12), p.e0204842-e0204842 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2161934316 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | Animals Auditory Cortex - diagnostic imaging Auditory Cortex - physiopathology Biology and Life Sciences Brain research Cerebellum Cortex (auditory) Cortex (somatosensory) Disease Models, Animal Engineering Fibers Fluorodeoxyglucose F18 - pharmacology Glucose Glucose metabolism Hemispheres Male Medical research Medicine and Health Sciences Metabolism Mortality Motor Cortex - diagnostic imaging Motor Cortex - physiopathology Motor Disorders - diagnostic imaging Motor Disorders - physiopathology Motor Neurons Motors Neuroimaging Optical fibers Physical Sciences Positron-Emission Tomography Preservation Pyramidal tracts Rats Rats, Sprague-Dawley Research and Analysis Methods Respiration Respiratory function Rodents Somatosensory cortex Spinal cord Veins & arteries |
title | Transcortical photothrombotic pyramidotomy model with persistent motor deficits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcortical%20photothrombotic%20pyramidotomy%20model%20with%20persistent%20motor%20deficits&rft.jtitle=PloS%20one&rft.au=Song,%20Hanlim&rft.date=2018-12-31&rft.volume=13&rft.issue=12&rft.spage=e0204842&rft.epage=e0204842&rft.pages=e0204842-e0204842&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0204842&rft_dat=%3Cproquest_plos_%3E2161934316%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-f95ff09beecdfe65b7617109e419148e889d5d3aea864c242f4d8af8a88efc1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2161934316&rft_id=info:pmid/30596648&rfr_iscdi=true |