Loading…

Distinctive accuracy measurement of binary descriptors in mobile augmented reality

Mobile Augmented Reality (MAR) requires a descriptor that is robust to changes in viewing conditions in real time application. Many different descriptors had been proposed in the literature for example floating-point descriptors (SIFT and SURF) and binary descriptors (BRIEF, ORB, BRISK and FREAK). A...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-01, Vol.14 (1), p.e0207191-e0207191
Main Authors: Tan, Siok Yee, Arshad, Haslina, Abdullah, Azizi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-2a109b7f07aebe2ecb98c0eb323a6d9854e771e895856b625029ec897c61d5703
cites cdi_FETCH-LOGICAL-c692t-2a109b7f07aebe2ecb98c0eb323a6d9854e771e895856b625029ec897c61d5703
container_end_page e0207191
container_issue 1
container_start_page e0207191
container_title PloS one
container_volume 14
creator Tan, Siok Yee
Arshad, Haslina
Abdullah, Azizi
description Mobile Augmented Reality (MAR) requires a descriptor that is robust to changes in viewing conditions in real time application. Many different descriptors had been proposed in the literature for example floating-point descriptors (SIFT and SURF) and binary descriptors (BRIEF, ORB, BRISK and FREAK). According to literature, floating-point descriptors are not suitable for real-time application because its operating speed does not satisfy real-time constraints. Binary descriptors have been developed with compact sizes and lower computation requirements. However, it is unclear which binary descriptors are more appropriate for MAR. Hence, a distinctive and efficient accuracy measurement of four state-of-the-art binary descriptors, namely, BRIEF, ORB, BRISK and FREAK were performed using the Mikolajczyk dataset and ALOI dataset to identify the most appropriate descriptor for MAR in terms of computation time and robustness to brightness, scale and rotation changes. The obtained results showed that FREAK is the most appropriate descriptor for MAR application as it able to produce an application that are efficient (shortest computation time) and robust towards scale, rotation and brightness changes.
doi_str_mv 10.1371/journal.pone.0207191
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2163004062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A568199235</galeid><doaj_id>oai_doaj_org_article_8940dbec482549c1b65b1e0f4ca9c0cf</doaj_id><sourcerecordid>A568199235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-2a109b7f07aebe2ecb98c0eb323a6d9854e771e895856b625029ec897c61d5703</originalsourceid><addsrcrecordid>eNqNkltr3DAQhU1padK0_6C0hkJpH3ariy1ZL4WQ3hYCgfTyKiR5vKvFtraSHLr_vnLWCeuSh-IHG_k7ZzQzJ8teYrTElOMPWzf4XrXLnethiQjiWOBH2SkWlCwYQfTx0fdJ9iyELUIlrRh7mp1QxFBZ8OI0u_5kQ7S9ifYGcmXM4JXZ5x2oMHjooI-5a3Jte-X3eQ3BeLuLzofc9nnntG2TaFiPHNS5B9XauH-ePWlUG-DF9D7Lfn75_OPi2-Ly6uvq4vxyYZggcUEURkLzBnEFGggYLSqDQFNCFatFVRbAOYZKlFXJNCMlIgJMJbhhuC45omfZ64PvrnVBTuMIkmBGESoQI4lYHYjaqa3cedulNqRTVt4eOL-WykdrWpCVKFCtwRQVKQthsGalxoCawihhkGmS18ep2qA7qE1q2at2Zjr_09uNXLsbySjmvCqTwbvJwLvfA4QoOxsMtK3qwQ239y4wQpSLhL75B324u4laq9SA7RuX6prRVJ6XrMJCEDqWXT5ApaeGzpqUnSYtcS54PxMkJsKfuFZDCHL1_fr_2atfc_btEbtJWYmb4NohWteHOVgcQONdCB6a-yFjJMfo301DjtGXU_ST7NXxgu5Fd1mnfwEMTP6d</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163004062</pqid></control><display><type>article</type><title>Distinctive accuracy measurement of binary descriptors in mobile augmented reality</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Tan, Siok Yee ; Arshad, Haslina ; Abdullah, Azizi</creator><contributor>Wang, Long</contributor><creatorcontrib>Tan, Siok Yee ; Arshad, Haslina ; Abdullah, Azizi ; Wang, Long</creatorcontrib><description>Mobile Augmented Reality (MAR) requires a descriptor that is robust to changes in viewing conditions in real time application. Many different descriptors had been proposed in the literature for example floating-point descriptors (SIFT and SURF) and binary descriptors (BRIEF, ORB, BRISK and FREAK). According to literature, floating-point descriptors are not suitable for real-time application because its operating speed does not satisfy real-time constraints. Binary descriptors have been developed with compact sizes and lower computation requirements. However, it is unclear which binary descriptors are more appropriate for MAR. Hence, a distinctive and efficient accuracy measurement of four state-of-the-art binary descriptors, namely, BRIEF, ORB, BRISK and FREAK were performed using the Mikolajczyk dataset and ALOI dataset to identify the most appropriate descriptor for MAR in terms of computation time and robustness to brightness, scale and rotation changes. The obtained results showed that FREAK is the most appropriate descriptor for MAR application as it able to produce an application that are efficient (shortest computation time) and robust towards scale, rotation and brightness changes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0207191</identifier><identifier>PMID: 30605474</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial intelligence ; Augmented reality ; Binary asteroids ; Biology and Life Sciences ; Brightness ; Computer and Information Sciences ; Computing time ; Efficiency ; Engineering and Technology ; Floating point arithmetic ; Image Interpretation, Computer-Assisted ; Information science ; Internet of Things ; Personal computers ; Physical Sciences ; Real time ; Research and Analysis Methods ; Researchers ; Robustness (mathematics) ; Rotation ; Sensors ; Smartphones ; State of the art ; Time Factors ; Virtual Reality</subject><ispartof>PloS one, 2019-01, Vol.14 (1), p.e0207191-e0207191</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Tan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Tan et al 2019 Tan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-2a109b7f07aebe2ecb98c0eb323a6d9854e771e895856b625029ec897c61d5703</citedby><cites>FETCH-LOGICAL-c692t-2a109b7f07aebe2ecb98c0eb323a6d9854e771e895856b625029ec897c61d5703</cites><orcidid>0000-0003-3566-9938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2163004062/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2163004062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30605474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Long</contributor><creatorcontrib>Tan, Siok Yee</creatorcontrib><creatorcontrib>Arshad, Haslina</creatorcontrib><creatorcontrib>Abdullah, Azizi</creatorcontrib><title>Distinctive accuracy measurement of binary descriptors in mobile augmented reality</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mobile Augmented Reality (MAR) requires a descriptor that is robust to changes in viewing conditions in real time application. Many different descriptors had been proposed in the literature for example floating-point descriptors (SIFT and SURF) and binary descriptors (BRIEF, ORB, BRISK and FREAK). According to literature, floating-point descriptors are not suitable for real-time application because its operating speed does not satisfy real-time constraints. Binary descriptors have been developed with compact sizes and lower computation requirements. However, it is unclear which binary descriptors are more appropriate for MAR. Hence, a distinctive and efficient accuracy measurement of four state-of-the-art binary descriptors, namely, BRIEF, ORB, BRISK and FREAK were performed using the Mikolajczyk dataset and ALOI dataset to identify the most appropriate descriptor for MAR in terms of computation time and robustness to brightness, scale and rotation changes. The obtained results showed that FREAK is the most appropriate descriptor for MAR application as it able to produce an application that are efficient (shortest computation time) and robust towards scale, rotation and brightness changes.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Augmented reality</subject><subject>Binary asteroids</subject><subject>Biology and Life Sciences</subject><subject>Brightness</subject><subject>Computer and Information Sciences</subject><subject>Computing time</subject><subject>Efficiency</subject><subject>Engineering and Technology</subject><subject>Floating point arithmetic</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Information science</subject><subject>Internet of Things</subject><subject>Personal computers</subject><subject>Physical Sciences</subject><subject>Real time</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Robustness (mathematics)</subject><subject>Rotation</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>State of the art</subject><subject>Time Factors</subject><subject>Virtual Reality</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltr3DAQhU1padK0_6C0hkJpH3ariy1ZL4WQ3hYCgfTyKiR5vKvFtraSHLr_vnLWCeuSh-IHG_k7ZzQzJ8teYrTElOMPWzf4XrXLnethiQjiWOBH2SkWlCwYQfTx0fdJ9iyELUIlrRh7mp1QxFBZ8OI0u_5kQ7S9ifYGcmXM4JXZ5x2oMHjooI-5a3Jte-X3eQ3BeLuLzofc9nnntG2TaFiPHNS5B9XauH-ePWlUG-DF9D7Lfn75_OPi2-Ly6uvq4vxyYZggcUEURkLzBnEFGggYLSqDQFNCFatFVRbAOYZKlFXJNCMlIgJMJbhhuC45omfZ64PvrnVBTuMIkmBGESoQI4lYHYjaqa3cedulNqRTVt4eOL-WykdrWpCVKFCtwRQVKQthsGalxoCawihhkGmS18ep2qA7qE1q2at2Zjr_09uNXLsbySjmvCqTwbvJwLvfA4QoOxsMtK3qwQ239y4wQpSLhL75B324u4laq9SA7RuX6prRVJ6XrMJCEDqWXT5ApaeGzpqUnSYtcS54PxMkJsKfuFZDCHL1_fr_2atfc_btEbtJWYmb4NohWteHOVgcQONdCB6a-yFjJMfo301DjtGXU_ST7NXxgu5Fd1mnfwEMTP6d</recordid><startdate>20190103</startdate><enddate>20190103</enddate><creator>Tan, Siok Yee</creator><creator>Arshad, Haslina</creator><creator>Abdullah, Azizi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3566-9938</orcidid></search><sort><creationdate>20190103</creationdate><title>Distinctive accuracy measurement of binary descriptors in mobile augmented reality</title><author>Tan, Siok Yee ; Arshad, Haslina ; Abdullah, Azizi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-2a109b7f07aebe2ecb98c0eb323a6d9854e771e895856b625029ec897c61d5703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Augmented reality</topic><topic>Binary asteroids</topic><topic>Biology and Life Sciences</topic><topic>Brightness</topic><topic>Computer and Information Sciences</topic><topic>Computing time</topic><topic>Efficiency</topic><topic>Engineering and Technology</topic><topic>Floating point arithmetic</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Information science</topic><topic>Internet of Things</topic><topic>Personal computers</topic><topic>Physical Sciences</topic><topic>Real time</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Robustness (mathematics)</topic><topic>Rotation</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>State of the art</topic><topic>Time Factors</topic><topic>Virtual Reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Siok Yee</creatorcontrib><creatorcontrib>Arshad, Haslina</creatorcontrib><creatorcontrib>Abdullah, Azizi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Siok Yee</au><au>Arshad, Haslina</au><au>Abdullah, Azizi</au><au>Wang, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinctive accuracy measurement of binary descriptors in mobile augmented reality</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-01-03</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>e0207191</spage><epage>e0207191</epage><pages>e0207191-e0207191</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mobile Augmented Reality (MAR) requires a descriptor that is robust to changes in viewing conditions in real time application. Many different descriptors had been proposed in the literature for example floating-point descriptors (SIFT and SURF) and binary descriptors (BRIEF, ORB, BRISK and FREAK). According to literature, floating-point descriptors are not suitable for real-time application because its operating speed does not satisfy real-time constraints. Binary descriptors have been developed with compact sizes and lower computation requirements. However, it is unclear which binary descriptors are more appropriate for MAR. Hence, a distinctive and efficient accuracy measurement of four state-of-the-art binary descriptors, namely, BRIEF, ORB, BRISK and FREAK were performed using the Mikolajczyk dataset and ALOI dataset to identify the most appropriate descriptor for MAR in terms of computation time and robustness to brightness, scale and rotation changes. The obtained results showed that FREAK is the most appropriate descriptor for MAR application as it able to produce an application that are efficient (shortest computation time) and robust towards scale, rotation and brightness changes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30605474</pmid><doi>10.1371/journal.pone.0207191</doi><tpages>e0207191</tpages><orcidid>https://orcid.org/0000-0003-3566-9938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-01, Vol.14 (1), p.e0207191-e0207191
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2163004062
source Open Access: PubMed Central; Publicly Available Content Database
subjects Accuracy
Algorithms
Analysis
Artificial intelligence
Augmented reality
Binary asteroids
Biology and Life Sciences
Brightness
Computer and Information Sciences
Computing time
Efficiency
Engineering and Technology
Floating point arithmetic
Image Interpretation, Computer-Assisted
Information science
Internet of Things
Personal computers
Physical Sciences
Real time
Research and Analysis Methods
Researchers
Robustness (mathematics)
Rotation
Sensors
Smartphones
State of the art
Time Factors
Virtual Reality
title Distinctive accuracy measurement of binary descriptors in mobile augmented reality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinctive%20accuracy%20measurement%20of%20binary%20descriptors%20in%20mobile%20augmented%20reality&rft.jtitle=PloS%20one&rft.au=Tan,%20Siok%20Yee&rft.date=2019-01-03&rft.volume=14&rft.issue=1&rft.spage=e0207191&rft.epage=e0207191&rft.pages=e0207191-e0207191&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0207191&rft_dat=%3Cgale_plos_%3EA568199235%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-2a109b7f07aebe2ecb98c0eb323a6d9854e771e895856b625029ec897c61d5703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2163004062&rft_id=info:pmid/30605474&rft_galeid=A568199235&rfr_iscdi=true