Loading…
Variation in the susceptibility of Anopheles gambiae to botanicals across a metropolitan region of Nigeria
Pesticide resistance is normally associated with genetic changes, resulting in varied responses to insecticides between different populations. There is little evidence of resistance to plant allelochemicals; it is likely that their efficacy varies between genetically diverse populations, which may l...
Saved in:
Published in: | PloS one 2019-01, Vol.14 (1), p.e0210440 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pesticide resistance is normally associated with genetic changes, resulting in varied responses to insecticides between different populations. There is little evidence of resistance to plant allelochemicals; it is likely that their efficacy varies between genetically diverse populations, which may lead to the development of resistance in the future. This study evaluated the response of Anopheles gambiae (larvae and adults) from spatially different populations to acetone extracts of two botanicals, Piper guineense and Eugenia aromatica. Mosquito samples from 10 locations within Akure metropolis in Southwest Nigeria were tested for variation in susceptibility to the toxic effect of botanical extracts. The spatial distribution of the tolerance magnitude (T.M.) of the mosquito populations to the botanicals was also mapped. The populations of An. gambiae manifested significant differences in their level of tolerance to the botanicals. The centre of the metropolis was the hot spot of tolerance to the botanicals. There was a significant positive correlation between the adulticidal activities of both botanicals and initial knockdown. Hence, knockdown by these botanicals could be a predictor of their subsequent mortality. In revealing variation in response to botanical pesticides, our work has demonstrated that any future use of botanicals as alternative environmentally friendly vector control chemicals needs to be closely monitored to ensure that resistance does not develop. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0210440 |