Loading…

An event-related potential comparison of facial expression processing between cartoon and real faces

Faces play important roles in the social lives of humans. Besides real faces, people also encounter numerous cartoon faces in daily life which convey basic emotional states through facial expressions. Using event-related potentials (ERPs), we conducted a facial expression recognition experiment with...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-01, Vol.14 (1), p.e0198868-e0198868
Main Authors: Zhao, Jiayin, Meng, Qi, An, Licong, Wang, Yifang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Faces play important roles in the social lives of humans. Besides real faces, people also encounter numerous cartoon faces in daily life which convey basic emotional states through facial expressions. Using event-related potentials (ERPs), we conducted a facial expression recognition experiment with 17 university students to compare the processing of cartoon faces with that of real faces. This study used face type (real vs. cartoon), emotion valence (happy vs. angry) and participant gender (male vs. female) as independent variables. Reaction time, recognition accuracy, and the amplitudes and latencies of emotion processing-related ERP components such as N170, VPP (vertex positive potential), and LPP (late positive potential) were used as dependent variables. The ERP results revealed that cartoon faces caused larger N170 and VPP amplitudes as well as a briefer N170 latency than did real faces; that real faces induced larger LPP amplitudes than did cartoon faces. In addition, the results showed a significant difference in the brain regions as reflected in a right hemispheric advantage. The behavioral results showed that the reaction times for happy faces were shorter than those for angry faces; that females showed a higher accuracy than did males; and that males showed a higher recognition accuracy for angry faces than happy faces. Due to the sample size, these results may suggestively but not rigorously demonstrate differences in facial expression recognition and neurological processing between cartoon faces and real faces. Cartoon faces showed a higher processing intensity and speed than real faces during the early processing stage. However, more attentional resources were allocated for real faces during the late processing stage.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0198868