Loading…
Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis
Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis are prevalent bacterial causes of swine infections. Morbidity, mortality and positively impacting the financial burden of infection occurs with appropriate antimicrobial therapy. Increasing antimicrobial resistance complic...
Saved in:
Published in: | PloS one 2019-01, Vol.14 (1), p.e0210154-e0210154 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c758t-37561e0b3498a3e14a57dd8946042054c50e8930128fa55d5f56f8730c4f0c8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c758t-37561e0b3498a3e14a57dd8946042054c50e8930128fa55d5f56f8730c4f0c8a3 |
container_end_page | e0210154 |
container_issue | 1 |
container_start_page | e0210154 |
container_title | PloS one |
container_volume | 14 |
creator | Blondeau, Joseph M Fitch, Shantelle D |
description | Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis are prevalent bacterial causes of swine infections. Morbidity, mortality and positively impacting the financial burden of infection occurs with appropriate antimicrobial therapy. Increasing antimicrobial resistance complicates drug therapy and resistance prevention is now a necessity to optimize therapy and prolong drug life. Mutant bacterial cells are said to arise spontaneously in bacterial densities of 107-109 or greater colony forming units/ml. Antibiotic drug concentration inhibiting growth of the least susceptible cell in these high density populations has been termed the mutant prevention concentration (MPC). In this study MPC and minimum inhibitory concentration (MIC) values of ceftiofur, enrofloxacin, florfenicol, tilmicosin and tulathromycin were determined against the swine pathogens A. pleuropneumoniae, P.multocida and S. suis. The following MIC90/MPC90 values (mg/L) for 67 A. pleuropneumoniae and 73 P. multocida strains respectively were as follows: A. pleuropneumoniae 0.031/0.5, ≤0.016/0.5, 0.5/2, 4/32, 2/32; P. multocida 0.004/0.25, 0.016/0.125, 0.5/0.5, 8/16, 0.5/1. For 33 S. suis strains, MIC90 values (mg/L) respectively were as follows: 1, 0.25, 4, ≥8 and ≥8. A total of 16 S. suis strains with MIC values of 0.063-0.5 mg/L to ceftiofur and 0.25-0.5 mg/L to enrofloxacin were tested by MPC; MPC values respectively were 0.5 and 1 mg/L respectively. MPC concentrations provide a dosing target which may serve to reduce amplification of bacterial subpopulations with reduced antimicrobial susceptibility. Drug potency based on MIC90 values was ceftiofur > enrofloxacin >florfenicol = tulathromycin > tilmicosin; based on MPC90 values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin. |
doi_str_mv | 10.1371/journal.pone.0210154 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2166103623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569062832</galeid><doaj_id>oai_doaj_org_article_621b2b40f47d4341831345d22852ef3d</doaj_id><sourcerecordid>A569062832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-37561e0b3498a3e14a57dd8946042054c50e8930128fa55d5f56f8730c4f0c8a3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9GAIAq7az4mmdkboRQ_CpWKVW9DNpPMpmSSMR-1_eNem-luS1d6IXMxyZnnfc8k55yqeo7gApEGvTv3OThhF6N3agExgojWD6p9tCR4zjAkD--s96onMZ5DSEnL2ONqj0CGl4yQ_erPl5yES2AM6kK5ZLwDwnVgMM4MeQDGrc3KJB-ugPROFiKIa6gLuQcXwmYVgfYBKBe8tv5SSONmQCpdKJ3DDJRg0MoZ6e0MJGOHsopmkyVlK9I6-OGqqEBSMakOiF4YFxOIv41TYCyA75WL4FAm4_yqJLA2RzBalYMfncqDd0aoGfgqij4HZa0AQ7bJS9OJ6zxnKaix7L2URRmziU-rR1rYqJ5t3wfVj48fvh99np-cfjo-OjyZy4a2aU4aypCCK1IvW0EUqgVtuq5d1gzWGNJaUqjaJYEIt1pQ2lFNmW4bAmWtoSySg-rlxne0PvJtySLHiDEECcOkEMcbovPinI_BDCJccS8Mvw740HMRkpFWcYbRCq9qqOumq0mNWoJITTuMW4qVJl3xer_NlleD6jblsjumu1-cWfPeX3BGcItrVgzebA2C_1VKm_hgopxu1Cmfp_9uSkvRBqKCvvoHvf90W6oX5QDGaV_yysmUH1K2LG3YElyoxT1UeTo1tYtT2pT4juDtjqAwSV2mXuQY-fHZt_9nT3_usq_vsGslbFpHb_PU8nEXrDegDD7GoPTtJSPIp_G8uQ0-jSffjmeRvbhboFvRzTySv2zYPHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2166103623</pqid></control><display><type>article</type><title>Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Blondeau, Joseph M ; Fitch, Shantelle D</creator><contributor>Singer, Andrew C.</contributor><creatorcontrib>Blondeau, Joseph M ; Fitch, Shantelle D ; Singer, Andrew C.</creatorcontrib><description>Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis are prevalent bacterial causes of swine infections. Morbidity, mortality and positively impacting the financial burden of infection occurs with appropriate antimicrobial therapy. Increasing antimicrobial resistance complicates drug therapy and resistance prevention is now a necessity to optimize therapy and prolong drug life. Mutant bacterial cells are said to arise spontaneously in bacterial densities of 107-109 or greater colony forming units/ml. Antibiotic drug concentration inhibiting growth of the least susceptible cell in these high density populations has been termed the mutant prevention concentration (MPC). In this study MPC and minimum inhibitory concentration (MIC) values of ceftiofur, enrofloxacin, florfenicol, tilmicosin and tulathromycin were determined against the swine pathogens A. pleuropneumoniae, P.multocida and S. suis. The following MIC90/MPC90 values (mg/L) for 67 A. pleuropneumoniae and 73 P. multocida strains respectively were as follows: A. pleuropneumoniae 0.031/0.5, ≤0.016/0.5, 0.5/2, 4/32, 2/32; P. multocida 0.004/0.25, 0.016/0.125, 0.5/0.5, 8/16, 0.5/1. For 33 S. suis strains, MIC90 values (mg/L) respectively were as follows: 1, 0.25, 4, ≥8 and ≥8. A total of 16 S. suis strains with MIC values of 0.063-0.5 mg/L to ceftiofur and 0.25-0.5 mg/L to enrofloxacin were tested by MPC; MPC values respectively were 0.5 and 1 mg/L respectively. MPC concentrations provide a dosing target which may serve to reduce amplification of bacterial subpopulations with reduced antimicrobial susceptibility. Drug potency based on MIC90 values was ceftiofur > enrofloxacin >florfenicol = tulathromycin > tilmicosin; based on MPC90 values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0210154</identifier><identifier>PMID: 30629633</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actinobacillus pleuropneumoniae ; Actinobacillus pleuropneumoniae - drug effects ; Actinobacillus pleuropneumoniae - genetics ; Actinobacillus pleuropneumoniae - isolation & purification ; Animal Husbandry ; Animals ; Anti-Bacterial Agents - pharmacology ; Anti-Bacterial Agents - therapeutic use ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antimicrobial resistance ; Bacteria ; Bacterial infections ; Biology and Life Sciences ; Cephalosporins - pharmacology ; Cephalosporins - therapeutic use ; Chemotherapy ; Clinical outcomes ; Complications and side effects ; Disaccharides - pharmacology ; Disaccharides - therapeutic use ; Disease prevention ; Dosage and administration ; Drug resistance ; Drug Resistance, Multiple, Bacterial - drug effects ; Drug Resistance, Multiple, Bacterial - genetics ; Drug therapy ; E coli ; Enrofloxacin ; Enrofloxacin - pharmacology ; Enrofloxacin - therapeutic use ; Florfenicol ; Heterocyclic Compounds - pharmacology ; Heterocyclic Compounds - therapeutic use ; Hogs ; Hypotheses ; Infections ; Infectious diseases ; Laboratories ; Livestock ; Medicine and Health Sciences ; Microbial drug resistance ; Microbial Sensitivity Tests ; Microbiology ; Minimum inhibitory concentration ; Morbidity ; Pasteurella multocida ; Pasteurella multocida - drug effects ; Pasteurella multocida - genetics ; Pasteurella multocida - isolation & purification ; Pathogenesis ; Pathogens ; Pneumonia ; Prevention ; Proteins ; Respiratory diseases ; Strains (organisms) ; Streptococcus infections ; Streptococcus suis ; Streptococcus suis - drug effects ; Streptococcus suis - genetics ; Streptococcus suis - isolation & purification ; Subpopulations ; Swine ; Swine Diseases - drug therapy ; Swine Diseases - microbiology ; Thiamphenicol - analogs & derivatives ; Thiamphenicol - pharmacology ; Thiamphenicol - therapeutic use ; Tilmicosin ; Tylosin - analogs & derivatives ; Tylosin - pharmacology ; Tylosin - therapeutic use ; Veterinary medicine</subject><ispartof>PloS one, 2019-01, Vol.14 (1), p.e0210154-e0210154</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Blondeau, Fitch. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Blondeau, Fitch 2019 Blondeau, Fitch</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-37561e0b3498a3e14a57dd8946042054c50e8930128fa55d5f56f8730c4f0c8a3</citedby><cites>FETCH-LOGICAL-c758t-37561e0b3498a3e14a57dd8946042054c50e8930128fa55d5f56f8730c4f0c8a3</cites><orcidid>0000-0003-3396-0334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2166103623/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2166103623?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30629633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Singer, Andrew C.</contributor><creatorcontrib>Blondeau, Joseph M</creatorcontrib><creatorcontrib>Fitch, Shantelle D</creatorcontrib><title>Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis are prevalent bacterial causes of swine infections. Morbidity, mortality and positively impacting the financial burden of infection occurs with appropriate antimicrobial therapy. Increasing antimicrobial resistance complicates drug therapy and resistance prevention is now a necessity to optimize therapy and prolong drug life. Mutant bacterial cells are said to arise spontaneously in bacterial densities of 107-109 or greater colony forming units/ml. Antibiotic drug concentration inhibiting growth of the least susceptible cell in these high density populations has been termed the mutant prevention concentration (MPC). In this study MPC and minimum inhibitory concentration (MIC) values of ceftiofur, enrofloxacin, florfenicol, tilmicosin and tulathromycin were determined against the swine pathogens A. pleuropneumoniae, P.multocida and S. suis. The following MIC90/MPC90 values (mg/L) for 67 A. pleuropneumoniae and 73 P. multocida strains respectively were as follows: A. pleuropneumoniae 0.031/0.5, ≤0.016/0.5, 0.5/2, 4/32, 2/32; P. multocida 0.004/0.25, 0.016/0.125, 0.5/0.5, 8/16, 0.5/1. For 33 S. suis strains, MIC90 values (mg/L) respectively were as follows: 1, 0.25, 4, ≥8 and ≥8. A total of 16 S. suis strains with MIC values of 0.063-0.5 mg/L to ceftiofur and 0.25-0.5 mg/L to enrofloxacin were tested by MPC; MPC values respectively were 0.5 and 1 mg/L respectively. MPC concentrations provide a dosing target which may serve to reduce amplification of bacterial subpopulations with reduced antimicrobial susceptibility. Drug potency based on MIC90 values was ceftiofur > enrofloxacin >florfenicol = tulathromycin > tilmicosin; based on MPC90 values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin.</description><subject>Actinobacillus pleuropneumoniae</subject><subject>Actinobacillus pleuropneumoniae - drug effects</subject><subject>Actinobacillus pleuropneumoniae - genetics</subject><subject>Actinobacillus pleuropneumoniae - isolation & purification</subject><subject>Animal Husbandry</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial resistance</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Biology and Life Sciences</subject><subject>Cephalosporins - pharmacology</subject><subject>Cephalosporins - therapeutic use</subject><subject>Chemotherapy</subject><subject>Clinical outcomes</subject><subject>Complications and side effects</subject><subject>Disaccharides - pharmacology</subject><subject>Disaccharides - therapeutic use</subject><subject>Disease prevention</subject><subject>Dosage and administration</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple, Bacterial - drug effects</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>Drug therapy</subject><subject>E coli</subject><subject>Enrofloxacin</subject><subject>Enrofloxacin - pharmacology</subject><subject>Enrofloxacin - therapeutic use</subject><subject>Florfenicol</subject><subject>Heterocyclic Compounds - pharmacology</subject><subject>Heterocyclic Compounds - therapeutic use</subject><subject>Hogs</subject><subject>Hypotheses</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Livestock</subject><subject>Medicine and Health Sciences</subject><subject>Microbial drug resistance</subject><subject>Microbial Sensitivity Tests</subject><subject>Microbiology</subject><subject>Minimum inhibitory concentration</subject><subject>Morbidity</subject><subject>Pasteurella multocida</subject><subject>Pasteurella multocida - drug effects</subject><subject>Pasteurella multocida - genetics</subject><subject>Pasteurella multocida - isolation & purification</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Pneumonia</subject><subject>Prevention</subject><subject>Proteins</subject><subject>Respiratory diseases</subject><subject>Strains (organisms)</subject><subject>Streptococcus infections</subject><subject>Streptococcus suis</subject><subject>Streptococcus suis - drug effects</subject><subject>Streptococcus suis - genetics</subject><subject>Streptococcus suis - isolation & purification</subject><subject>Subpopulations</subject><subject>Swine</subject><subject>Swine Diseases - drug therapy</subject><subject>Swine Diseases - microbiology</subject><subject>Thiamphenicol - analogs & derivatives</subject><subject>Thiamphenicol - pharmacology</subject><subject>Thiamphenicol - therapeutic use</subject><subject>Tilmicosin</subject><subject>Tylosin - analogs & derivatives</subject><subject>Tylosin - pharmacology</subject><subject>Tylosin - therapeutic use</subject><subject>Veterinary medicine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9GAIAq7az4mmdkboRQ_CpWKVW9DNpPMpmSSMR-1_eNem-luS1d6IXMxyZnnfc8k55yqeo7gApEGvTv3OThhF6N3agExgojWD6p9tCR4zjAkD--s96onMZ5DSEnL2ONqj0CGl4yQ_erPl5yES2AM6kK5ZLwDwnVgMM4MeQDGrc3KJB-ugPROFiKIa6gLuQcXwmYVgfYBKBe8tv5SSONmQCpdKJ3DDJRg0MoZ6e0MJGOHsopmkyVlK9I6-OGqqEBSMakOiF4YFxOIv41TYCyA75WL4FAm4_yqJLA2RzBalYMfncqDd0aoGfgqij4HZa0AQ7bJS9OJ6zxnKaix7L2URRmziU-rR1rYqJ5t3wfVj48fvh99np-cfjo-OjyZy4a2aU4aypCCK1IvW0EUqgVtuq5d1gzWGNJaUqjaJYEIt1pQ2lFNmW4bAmWtoSySg-rlxne0PvJtySLHiDEECcOkEMcbovPinI_BDCJccS8Mvw740HMRkpFWcYbRCq9qqOumq0mNWoJITTuMW4qVJl3xer_NlleD6jblsjumu1-cWfPeX3BGcItrVgzebA2C_1VKm_hgopxu1Cmfp_9uSkvRBqKCvvoHvf90W6oX5QDGaV_yysmUH1K2LG3YElyoxT1UeTo1tYtT2pT4juDtjqAwSV2mXuQY-fHZt_9nT3_usq_vsGslbFpHb_PU8nEXrDegDD7GoPTtJSPIp_G8uQ0-jSffjmeRvbhboFvRzTySv2zYPHg</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Blondeau, Joseph M</creator><creator>Fitch, Shantelle D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3396-0334</orcidid></search><sort><creationdate>20190110</creationdate><title>Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis</title><author>Blondeau, Joseph M ; Fitch, Shantelle D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-37561e0b3498a3e14a57dd8946042054c50e8930128fa55d5f56f8730c4f0c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actinobacillus pleuropneumoniae</topic><topic>Actinobacillus pleuropneumoniae - drug effects</topic><topic>Actinobacillus pleuropneumoniae - genetics</topic><topic>Actinobacillus pleuropneumoniae - isolation & purification</topic><topic>Animal Husbandry</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial resistance</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Biology and Life Sciences</topic><topic>Cephalosporins - pharmacology</topic><topic>Cephalosporins - therapeutic use</topic><topic>Chemotherapy</topic><topic>Clinical outcomes</topic><topic>Complications and side effects</topic><topic>Disaccharides - pharmacology</topic><topic>Disaccharides - therapeutic use</topic><topic>Disease prevention</topic><topic>Dosage and administration</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple, Bacterial - drug effects</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>Drug therapy</topic><topic>E coli</topic><topic>Enrofloxacin</topic><topic>Enrofloxacin - pharmacology</topic><topic>Enrofloxacin - therapeutic use</topic><topic>Florfenicol</topic><topic>Heterocyclic Compounds - pharmacology</topic><topic>Heterocyclic Compounds - therapeutic use</topic><topic>Hogs</topic><topic>Hypotheses</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Livestock</topic><topic>Medicine and Health Sciences</topic><topic>Microbial drug resistance</topic><topic>Microbial Sensitivity Tests</topic><topic>Microbiology</topic><topic>Minimum inhibitory concentration</topic><topic>Morbidity</topic><topic>Pasteurella multocida</topic><topic>Pasteurella multocida - drug effects</topic><topic>Pasteurella multocida - genetics</topic><topic>Pasteurella multocida - isolation & purification</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Pneumonia</topic><topic>Prevention</topic><topic>Proteins</topic><topic>Respiratory diseases</topic><topic>Strains (organisms)</topic><topic>Streptococcus infections</topic><topic>Streptococcus suis</topic><topic>Streptococcus suis - drug effects</topic><topic>Streptococcus suis - genetics</topic><topic>Streptococcus suis - isolation & purification</topic><topic>Subpopulations</topic><topic>Swine</topic><topic>Swine Diseases - drug therapy</topic><topic>Swine Diseases - microbiology</topic><topic>Thiamphenicol - analogs & derivatives</topic><topic>Thiamphenicol - pharmacology</topic><topic>Thiamphenicol - therapeutic use</topic><topic>Tilmicosin</topic><topic>Tylosin - analogs & derivatives</topic><topic>Tylosin - pharmacology</topic><topic>Tylosin - therapeutic use</topic><topic>Veterinary medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blondeau, Joseph M</creatorcontrib><creatorcontrib>Fitch, Shantelle D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blondeau, Joseph M</au><au>Fitch, Shantelle D</au><au>Singer, Andrew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>e0210154</spage><epage>e0210154</epage><pages>e0210154-e0210154</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis are prevalent bacterial causes of swine infections. Morbidity, mortality and positively impacting the financial burden of infection occurs with appropriate antimicrobial therapy. Increasing antimicrobial resistance complicates drug therapy and resistance prevention is now a necessity to optimize therapy and prolong drug life. Mutant bacterial cells are said to arise spontaneously in bacterial densities of 107-109 or greater colony forming units/ml. Antibiotic drug concentration inhibiting growth of the least susceptible cell in these high density populations has been termed the mutant prevention concentration (MPC). In this study MPC and minimum inhibitory concentration (MIC) values of ceftiofur, enrofloxacin, florfenicol, tilmicosin and tulathromycin were determined against the swine pathogens A. pleuropneumoniae, P.multocida and S. suis. The following MIC90/MPC90 values (mg/L) for 67 A. pleuropneumoniae and 73 P. multocida strains respectively were as follows: A. pleuropneumoniae 0.031/0.5, ≤0.016/0.5, 0.5/2, 4/32, 2/32; P. multocida 0.004/0.25, 0.016/0.125, 0.5/0.5, 8/16, 0.5/1. For 33 S. suis strains, MIC90 values (mg/L) respectively were as follows: 1, 0.25, 4, ≥8 and ≥8. A total of 16 S. suis strains with MIC values of 0.063-0.5 mg/L to ceftiofur and 0.25-0.5 mg/L to enrofloxacin were tested by MPC; MPC values respectively were 0.5 and 1 mg/L respectively. MPC concentrations provide a dosing target which may serve to reduce amplification of bacterial subpopulations with reduced antimicrobial susceptibility. Drug potency based on MIC90 values was ceftiofur > enrofloxacin >florfenicol = tulathromycin > tilmicosin; based on MPC90 values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30629633</pmid><doi>10.1371/journal.pone.0210154</doi><tpages>e0210154</tpages><orcidid>https://orcid.org/0000-0003-3396-0334</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-01, Vol.14 (1), p.e0210154-e0210154 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2166103623 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Actinobacillus pleuropneumoniae Actinobacillus pleuropneumoniae - drug effects Actinobacillus pleuropneumoniae - genetics Actinobacillus pleuropneumoniae - isolation & purification Animal Husbandry Animals Anti-Bacterial Agents - pharmacology Anti-Bacterial Agents - therapeutic use Antibiotics Antiinfectives and antibacterials Antimicrobial agents Antimicrobial resistance Bacteria Bacterial infections Biology and Life Sciences Cephalosporins - pharmacology Cephalosporins - therapeutic use Chemotherapy Clinical outcomes Complications and side effects Disaccharides - pharmacology Disaccharides - therapeutic use Disease prevention Dosage and administration Drug resistance Drug Resistance, Multiple, Bacterial - drug effects Drug Resistance, Multiple, Bacterial - genetics Drug therapy E coli Enrofloxacin Enrofloxacin - pharmacology Enrofloxacin - therapeutic use Florfenicol Heterocyclic Compounds - pharmacology Heterocyclic Compounds - therapeutic use Hogs Hypotheses Infections Infectious diseases Laboratories Livestock Medicine and Health Sciences Microbial drug resistance Microbial Sensitivity Tests Microbiology Minimum inhibitory concentration Morbidity Pasteurella multocida Pasteurella multocida - drug effects Pasteurella multocida - genetics Pasteurella multocida - isolation & purification Pathogenesis Pathogens Pneumonia Prevention Proteins Respiratory diseases Strains (organisms) Streptococcus infections Streptococcus suis Streptococcus suis - drug effects Streptococcus suis - genetics Streptococcus suis - isolation & purification Subpopulations Swine Swine Diseases - drug therapy Swine Diseases - microbiology Thiamphenicol - analogs & derivatives Thiamphenicol - pharmacology Thiamphenicol - therapeutic use Tilmicosin Tylosin - analogs & derivatives Tylosin - pharmacology Tylosin - therapeutic use Veterinary medicine |
title | Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutant%20prevention%20and%20minimum%20inhibitory%20concentration%20drug%20values%20for%20enrofloxacin,%20ceftiofur,%20florfenicol,%20tilmicosin%20and%20tulathromycin%20tested%20against%20swine%20pathogens%20Actinobacillus%20pleuropneumoniae,%20Pasteurella%20multocida%20and%20Streptococcus%20suis&rft.jtitle=PloS%20one&rft.au=Blondeau,%20Joseph%20M&rft.date=2019-01-10&rft.volume=14&rft.issue=1&rft.spage=e0210154&rft.epage=e0210154&rft.pages=e0210154-e0210154&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0210154&rft_dat=%3Cgale_plos_%3EA569062832%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c758t-37561e0b3498a3e14a57dd8946042054c50e8930128fa55d5f56f8730c4f0c8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2166103623&rft_id=info:pmid/30629633&rft_galeid=A569062832&rfr_iscdi=true |