Loading…

In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes

99m-Technetium-labeled (99mTc) erythrocyte imaging with planar scintigraphy is widely used for evaluating both patients with occult gastrointestinal bleeding and patients at risk for chemotherapy-induced cardiotoxicity. While a number of alternative radionuclide-based blood pool imaging agents have...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-01, Vol.14 (1), p.e0211012
Main Authors: Choi, Jung W, Budzevich, Mikalai, Wang, Shaowei, Gage, Kenneth, Estrella, Veronica, Gillies, Robert J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c692t-9874340882f40ce3a44fc7f107c5b1ddd898dbc87169acced3775c75bb988fc03
cites cdi_FETCH-LOGICAL-c692t-9874340882f40ce3a44fc7f107c5b1ddd898dbc87169acced3775c75bb988fc03
container_end_page
container_issue 1
container_start_page e0211012
container_title PloS one
container_volume 14
creator Choi, Jung W
Budzevich, Mikalai
Wang, Shaowei
Gage, Kenneth
Estrella, Veronica
Gillies, Robert J
description 99m-Technetium-labeled (99mTc) erythrocyte imaging with planar scintigraphy is widely used for evaluating both patients with occult gastrointestinal bleeding and patients at risk for chemotherapy-induced cardiotoxicity. While a number of alternative radionuclide-based blood pool imaging agents have been proposed, none have yet to achieve widespread clinical use. Here, we present both in vitro and small animal in vivo imaging evidence that the high physiological expression of the glucose transporter GLUT1 on human erythrocytes allows uptake of the widely available radiotracer 2-deoxy-2-(18F)fluoro-D-glucose (FDG), at a rate and magnitude sufficient for clinical blood pool positron emission tomographic (PET) imaging. This imaging technique is likely to be amenable to rapid clinical translation, as it can be achieved using a simple FDG labeling protocol, requires a relatively small volume of phlebotomized blood, and can be completed within a relatively short time period. As modern PET scanners typically have much greater count detection sensitivities than that of commonly used clinical gamma scintigraphic cameras, FDG-labeled human erythrocyte PET imaging may not only have significant advantages over 99mTc-labeled erythrocyte imaging, but may have other novel blood pool imaging applications.
doi_str_mv 10.1371/journal.pone.0211012
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2171190714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A571057218</galeid><doaj_id>oai_doaj_org_article_936e253d352040e09a103bdc330be91f</doaj_id><sourcerecordid>A571057218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9874340882f40ce3a44fc7f107c5b1ddd898dbc87169acced3775c75bb988fc03</originalsourceid><addsrcrecordid>eNqNk9-K1DAUxoso7rr6BqIFQfCiY9K0TXojLIurAwsL_rsNaZK2GdKeMUmHndfwic043WUKClJIk5Pf-ZJ8yUmSlxitMKH4_QYmNwq72sKoVyjHGOH8UXKOa5JnVY7I45P-WfLM-w1CJWFV9TQ5I6hiOa7QefJrPaY7s4N0C94EB2OqB-O9iZ0AA3RObHsj08YCqMiATc0gOjN2qRlTMcbRMI2gdGuk0WNIB5i8jq3SNp38gcPsOmvtBC7G4G7f2UlCRKxotNUq7achymi3D70DuQ_aP0-etMJ6_WL-XyTfrz9-u_qc3dx-Wl9d3mSyqvOQ1YwWpECM5W2BpCaiKFpJW4yoLBuslGI1U41kFFe1kFIrQmkpadk0NWOtROQieX3U3VrwfLbT8xxTjGtEcRGJ9ZFQIDZ86-LR3Z6DMPxPAFzHhQtGWs1rUum8JIqUOSqQRrXAiDRKEoIaXeM2an2YV5uaQSsZzXLCLkSXM6PpeQc7XpEiHpRFgTezgIOfk_bhH1ueqU7EXZmxhSgm45VKfllSjEqa44PW6i9U_FS8fRkfVGtifJHwbpEQmaDvQicm7_n665f_Z29_LNm3J2yvhQ29BzuF-AD9EiyOoHTgvdPtg3MY8UM93LvBD_XA53qIaa9OXX9Iui8A8ht-TQi8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2171190714</pqid></control><display><type>article</type><title>In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Choi, Jung W ; Budzevich, Mikalai ; Wang, Shaowei ; Gage, Kenneth ; Estrella, Veronica ; Gillies, Robert J</creator><contributor>Gelovani, Juri G.</contributor><creatorcontrib>Choi, Jung W ; Budzevich, Mikalai ; Wang, Shaowei ; Gage, Kenneth ; Estrella, Veronica ; Gillies, Robert J ; Gelovani, Juri G.</creatorcontrib><description>99m-Technetium-labeled (99mTc) erythrocyte imaging with planar scintigraphy is widely used for evaluating both patients with occult gastrointestinal bleeding and patients at risk for chemotherapy-induced cardiotoxicity. While a number of alternative radionuclide-based blood pool imaging agents have been proposed, none have yet to achieve widespread clinical use. Here, we present both in vitro and small animal in vivo imaging evidence that the high physiological expression of the glucose transporter GLUT1 on human erythrocytes allows uptake of the widely available radiotracer 2-deoxy-2-(18F)fluoro-D-glucose (FDG), at a rate and magnitude sufficient for clinical blood pool positron emission tomographic (PET) imaging. This imaging technique is likely to be amenable to rapid clinical translation, as it can be achieved using a simple FDG labeling protocol, requires a relatively small volume of phlebotomized blood, and can be completed within a relatively short time period. As modern PET scanners typically have much greater count detection sensitivities than that of commonly used clinical gamma scintigraphic cameras, FDG-labeled human erythrocyte PET imaging may not only have significant advantages over 99mTc-labeled erythrocyte imaging, but may have other novel blood pool imaging applications.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0211012</identifier><identifier>PMID: 30682160</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anticoagulants ; Biochemistry ; Biology and Life Sciences ; Bleeding ; Blood ; Cameras ; Cancer ; Cardiotoxicity ; Chelation therapy ; Chemotherapy ; Dosimetry ; Drug dosages ; Emissions ; Erythrocytes ; Erythrocytes - metabolism ; Fluorine isotopes ; Fluorodeoxyglucose F18 - pharmacology ; Gene expression ; Glucose ; Glucose transporter ; Glucose Transporter Type 1 - metabolism ; Humans ; Immunodeficiency ; Isotope Labeling ; Male ; Medical imaging ; Medicine and Health Sciences ; Membrane proteins ; Metabolism ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Nuclear medicine ; Patients ; Phlebotomy ; Physiology ; Positron emission ; Positron emission tomography ; Positron-Emission Tomography - methods ; Radioactive tracers ; Radioisotopes ; Rats ; Rats, Inbred F344 ; Red blood cells ; Research and Analysis Methods ; Scanners ; Scintigraphy ; Technetium ; Tomography</subject><ispartof>PloS one, 2019-01, Vol.14 (1), p.e0211012</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Choi et al 2019 Choi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9874340882f40ce3a44fc7f107c5b1ddd898dbc87169acced3775c75bb988fc03</citedby><cites>FETCH-LOGICAL-c692t-9874340882f40ce3a44fc7f107c5b1ddd898dbc87169acced3775c75bb988fc03</cites><orcidid>0000-0001-8206-4259 ; 0000-0002-8860-4436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2171190714/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2171190714?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30682160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gelovani, Juri G.</contributor><creatorcontrib>Choi, Jung W</creatorcontrib><creatorcontrib>Budzevich, Mikalai</creatorcontrib><creatorcontrib>Wang, Shaowei</creatorcontrib><creatorcontrib>Gage, Kenneth</creatorcontrib><creatorcontrib>Estrella, Veronica</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><title>In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>99m-Technetium-labeled (99mTc) erythrocyte imaging with planar scintigraphy is widely used for evaluating both patients with occult gastrointestinal bleeding and patients at risk for chemotherapy-induced cardiotoxicity. While a number of alternative radionuclide-based blood pool imaging agents have been proposed, none have yet to achieve widespread clinical use. Here, we present both in vitro and small animal in vivo imaging evidence that the high physiological expression of the glucose transporter GLUT1 on human erythrocytes allows uptake of the widely available radiotracer 2-deoxy-2-(18F)fluoro-D-glucose (FDG), at a rate and magnitude sufficient for clinical blood pool positron emission tomographic (PET) imaging. This imaging technique is likely to be amenable to rapid clinical translation, as it can be achieved using a simple FDG labeling protocol, requires a relatively small volume of phlebotomized blood, and can be completed within a relatively short time period. As modern PET scanners typically have much greater count detection sensitivities than that of commonly used clinical gamma scintigraphic cameras, FDG-labeled human erythrocyte PET imaging may not only have significant advantages over 99mTc-labeled erythrocyte imaging, but may have other novel blood pool imaging applications.</description><subject>Animals</subject><subject>Anticoagulants</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Bleeding</subject><subject>Blood</subject><subject>Cameras</subject><subject>Cancer</subject><subject>Cardiotoxicity</subject><subject>Chelation therapy</subject><subject>Chemotherapy</subject><subject>Dosimetry</subject><subject>Drug dosages</subject><subject>Emissions</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Fluorine isotopes</subject><subject>Fluorodeoxyglucose F18 - pharmacology</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glucose transporter</subject><subject>Glucose Transporter Type 1 - metabolism</subject><subject>Humans</subject><subject>Immunodeficiency</subject><subject>Isotope Labeling</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Membrane proteins</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Nuclear medicine</subject><subject>Patients</subject><subject>Phlebotomy</subject><subject>Physiology</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radioactive tracers</subject><subject>Radioisotopes</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Red blood cells</subject><subject>Research and Analysis Methods</subject><subject>Scanners</subject><subject>Scintigraphy</subject><subject>Technetium</subject><subject>Tomography</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-K1DAUxoso7rr6BqIFQfCiY9K0TXojLIurAwsL_rsNaZK2GdKeMUmHndfwic043WUKClJIk5Pf-ZJ8yUmSlxitMKH4_QYmNwq72sKoVyjHGOH8UXKOa5JnVY7I45P-WfLM-w1CJWFV9TQ5I6hiOa7QefJrPaY7s4N0C94EB2OqB-O9iZ0AA3RObHsj08YCqMiATc0gOjN2qRlTMcbRMI2gdGuk0WNIB5i8jq3SNp38gcPsOmvtBC7G4G7f2UlCRKxotNUq7achymi3D70DuQ_aP0-etMJ6_WL-XyTfrz9-u_qc3dx-Wl9d3mSyqvOQ1YwWpECM5W2BpCaiKFpJW4yoLBuslGI1U41kFFe1kFIrQmkpadk0NWOtROQieX3U3VrwfLbT8xxTjGtEcRGJ9ZFQIDZ86-LR3Z6DMPxPAFzHhQtGWs1rUum8JIqUOSqQRrXAiDRKEoIaXeM2an2YV5uaQSsZzXLCLkSXM6PpeQc7XpEiHpRFgTezgIOfk_bhH1ueqU7EXZmxhSgm45VKfllSjEqa44PW6i9U_FS8fRkfVGtifJHwbpEQmaDvQicm7_n665f_Z29_LNm3J2yvhQ29BzuF-AD9EiyOoHTgvdPtg3MY8UM93LvBD_XA53qIaa9OXX9Iui8A8ht-TQi8</recordid><startdate>20190125</startdate><enddate>20190125</enddate><creator>Choi, Jung W</creator><creator>Budzevich, Mikalai</creator><creator>Wang, Shaowei</creator><creator>Gage, Kenneth</creator><creator>Estrella, Veronica</creator><creator>Gillies, Robert J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8206-4259</orcidid><orcidid>https://orcid.org/0000-0002-8860-4436</orcidid></search><sort><creationdate>20190125</creationdate><title>In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes</title><author>Choi, Jung W ; Budzevich, Mikalai ; Wang, Shaowei ; Gage, Kenneth ; Estrella, Veronica ; Gillies, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9874340882f40ce3a44fc7f107c5b1ddd898dbc87169acced3775c75bb988fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Anticoagulants</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Bleeding</topic><topic>Blood</topic><topic>Cameras</topic><topic>Cancer</topic><topic>Cardiotoxicity</topic><topic>Chelation therapy</topic><topic>Chemotherapy</topic><topic>Dosimetry</topic><topic>Drug dosages</topic><topic>Emissions</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Fluorine isotopes</topic><topic>Fluorodeoxyglucose F18 - pharmacology</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glucose transporter</topic><topic>Glucose Transporter Type 1 - metabolism</topic><topic>Humans</topic><topic>Immunodeficiency</topic><topic>Isotope Labeling</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Membrane proteins</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Nuclear medicine</topic><topic>Patients</topic><topic>Phlebotomy</topic><topic>Physiology</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radioactive tracers</topic><topic>Radioisotopes</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Red blood cells</topic><topic>Research and Analysis Methods</topic><topic>Scanners</topic><topic>Scintigraphy</topic><topic>Technetium</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jung W</creatorcontrib><creatorcontrib>Budzevich, Mikalai</creatorcontrib><creatorcontrib>Wang, Shaowei</creatorcontrib><creatorcontrib>Gage, Kenneth</creatorcontrib><creatorcontrib>Estrella, Veronica</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>PHMC-Proquest健康医学期刊库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jung W</au><au>Budzevich, Mikalai</au><au>Wang, Shaowei</au><au>Gage, Kenneth</au><au>Estrella, Veronica</au><au>Gillies, Robert J</au><au>Gelovani, Juri G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-01-25</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>e0211012</spage><pages>e0211012-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>99m-Technetium-labeled (99mTc) erythrocyte imaging with planar scintigraphy is widely used for evaluating both patients with occult gastrointestinal bleeding and patients at risk for chemotherapy-induced cardiotoxicity. While a number of alternative radionuclide-based blood pool imaging agents have been proposed, none have yet to achieve widespread clinical use. Here, we present both in vitro and small animal in vivo imaging evidence that the high physiological expression of the glucose transporter GLUT1 on human erythrocytes allows uptake of the widely available radiotracer 2-deoxy-2-(18F)fluoro-D-glucose (FDG), at a rate and magnitude sufficient for clinical blood pool positron emission tomographic (PET) imaging. This imaging technique is likely to be amenable to rapid clinical translation, as it can be achieved using a simple FDG labeling protocol, requires a relatively small volume of phlebotomized blood, and can be completed within a relatively short time period. As modern PET scanners typically have much greater count detection sensitivities than that of commonly used clinical gamma scintigraphic cameras, FDG-labeled human erythrocyte PET imaging may not only have significant advantages over 99mTc-labeled erythrocyte imaging, but may have other novel blood pool imaging applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30682160</pmid><doi>10.1371/journal.pone.0211012</doi><tpages>e0211012</tpages><orcidid>https://orcid.org/0000-0001-8206-4259</orcidid><orcidid>https://orcid.org/0000-0002-8860-4436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-01, Vol.14 (1), p.e0211012
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2171190714
source Publicly Available Content Database; PubMed Central
subjects Animals
Anticoagulants
Biochemistry
Biology and Life Sciences
Bleeding
Blood
Cameras
Cancer
Cardiotoxicity
Chelation therapy
Chemotherapy
Dosimetry
Drug dosages
Emissions
Erythrocytes
Erythrocytes - metabolism
Fluorine isotopes
Fluorodeoxyglucose F18 - pharmacology
Gene expression
Glucose
Glucose transporter
Glucose Transporter Type 1 - metabolism
Humans
Immunodeficiency
Isotope Labeling
Male
Medical imaging
Medicine and Health Sciences
Membrane proteins
Metabolism
Mice
Mice, Inbred NOD
Mice, SCID
Nuclear medicine
Patients
Phlebotomy
Physiology
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Radioactive tracers
Radioisotopes
Rats
Rats, Inbred F344
Red blood cells
Research and Analysis Methods
Scanners
Scintigraphy
Technetium
Tomography
title In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20positron%20emission%20tomographic%20blood%20pool%20imaging%20in%20an%20immunodeficient%20mouse%20model%20using%2018F-fluorodeoxyglucose%20labeled%20human%20erythrocytes&rft.jtitle=PloS%20one&rft.au=Choi,%20Jung%20W&rft.date=2019-01-25&rft.volume=14&rft.issue=1&rft.spage=e0211012&rft.pages=e0211012-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0211012&rft_dat=%3Cgale_plos_%3EA571057218%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c692t-9874340882f40ce3a44fc7f107c5b1ddd898dbc87169acced3775c75bb988fc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2171190714&rft_id=info:pmid/30682160&rft_galeid=A571057218&rfr_iscdi=true