Loading…
Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests
Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere a...
Saved in:
Published in: | PloS one 2019-02, Vol.14 (2), p.e0211510-e0211510 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c721t-ffc8d94d1faa8c57b1f965a7b04f7fc67fa873a241ccca811877acdd10aef1bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c721t-ffc8d94d1faa8c57b1f965a7b04f7fc67fa873a241ccca811877acdd10aef1bf3 |
container_end_page | e0211510 |
container_issue | 2 |
container_start_page | e0211510 |
container_title | PloS one |
container_volume | 14 |
creator | Besnard, Simon Carvalhais, Nuno Arain, M Altaf Black, Andrew Brede, Benjamin Buchmann, Nina Chen, Jiquan Clevers, Jan G P W Dutrieux, Loïc P Gans, Fabian Herold, Martin Jung, Martin Kosugi, Yoshiko Knohl, Alexander Law, Beverly E Paul-Limoges, Eugénie Lohila, Annalea Merbold, Lutz Roupsard, Olivier Valentini, Riccardo Wolf, Sebastian Zhang, Xudong Reichstein, Markus |
description | Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere and atmosphere in forests that are affecting the global C cycle. Current forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation conditions, which carry legacy effects from disturbances and extreme climate events. Our level of understanding from the legacies of these processes on net CO2 fluxes is still limited due to their complexities and their long-term effects. Here, we combined remote sensing, climate, and eddy-covariance flux data to study net ecosystem CO2 exchange (NEE) at 185 forest sites globally. Instead of commonly used non-dynamic statistical methods, we employed a type of recurrent neural network (RNN), called Long Short-Term Memory network (LSTM) that captures information from the vegetation and climate's temporal dynamics. The resulting data-driven model integrates interannual and seasonal variations of climate and vegetation by using Landsat and climate data at each site. The presented LSTM algorithm was able to effectively describe the overall seasonal variability (Nash-Sutcliffe efficiency, NSE = 0.66) and across-site (NSE = 0.42) variations in NEE, while it had less success in predicting specific seasonal and interannual anomalies (NSE = 0.07). This analysis demonstrated that an LSTM approach with embedded climate and vegetation memory effects outperformed a non-dynamic statistical model (i.e. Random Forest) for estimating NEE. Additionally, it is shown that the vegetation mean seasonal cycle embeds most of the information content to realistically explain the spatial and seasonal variations in NEE. These findings show the relevance of capturing memory effects from both climate and vegetation in quantifying spatio-temporal variations in forest NEE. |
doi_str_mv | 10.1371/journal.pone.0211510 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2176706300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_14bd42e3be0c4605879929887d02a34e</doaj_id><sourcerecordid>2176706300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c721t-ffc8d94d1faa8c57b1f965a7b04f7fc67fa873a241ccca811877acdd10aef1bf3</originalsourceid><addsrcrecordid>eNptUk1vEzEUXCEQLYV_gMASFzgk-Gvt3R6QqghopaBe4Igsr_d5u5FjB3s3Jf8eb5JWbcXpWfbM-L15UxRvCZ4TJsnnVRij126-CR7mmBJSEvysOCU1ozNBMXv-4HxSvEpphXHJKiFeFicMSyqoqE-L3z9gHeIOgbVghoSCRcb1az0A0r5FW-hg0EMfPNJ7RO875GFAYELapQHWaHFNkXXjX0io96hzodEO2RAhDel18cJql-DNsZ4Vv759_bm4nC2vv18tLpYzIykZZtaaqq15S6zWlSllQ2wtSi0bzK20RkirK8k05cQYoytCKim1aVuCNVjSWHZWvD_oblxI6uhMUpRIIbFgGGfE1QHRBr1Sm5hHjDsVdK_2FyF2SsehNw4U4U3LKbAGsOECl5Wsa1pXlWwx1YxD1jo_aN3qDnx2BLzyOpo-7QVd38RJ_HaMyrupbMYmqZJXuKSZ_OXY6tisoTXgh6jdo44ev_j-RnVhqwQTPLuSBT4dBG6e0C4vlmq6w9NqCRdbkrEfj5_F8GfMG1HrPhlwTnsI42RQVZYl57zO0A9PoP-3kR9QJoaUItj7DghWUyzvWGqKpTrGMtPePRz6nnSXQ_YPKHzicQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176706300</pqid></control><display><type>article</type><title>Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Besnard, Simon ; Carvalhais, Nuno ; Arain, M Altaf ; Black, Andrew ; Brede, Benjamin ; Buchmann, Nina ; Chen, Jiquan ; Clevers, Jan G P W ; Dutrieux, Loïc P ; Gans, Fabian ; Herold, Martin ; Jung, Martin ; Kosugi, Yoshiko ; Knohl, Alexander ; Law, Beverly E ; Paul-Limoges, Eugénie ; Lohila, Annalea ; Merbold, Lutz ; Roupsard, Olivier ; Valentini, Riccardo ; Wolf, Sebastian ; Zhang, Xudong ; Reichstein, Markus</creator><contributor>Hui, Dafeng</contributor><creatorcontrib>Besnard, Simon ; Carvalhais, Nuno ; Arain, M Altaf ; Black, Andrew ; Brede, Benjamin ; Buchmann, Nina ; Chen, Jiquan ; Clevers, Jan G P W ; Dutrieux, Loïc P ; Gans, Fabian ; Herold, Martin ; Jung, Martin ; Kosugi, Yoshiko ; Knohl, Alexander ; Law, Beverly E ; Paul-Limoges, Eugénie ; Lohila, Annalea ; Merbold, Lutz ; Roupsard, Olivier ; Valentini, Riccardo ; Wolf, Sebastian ; Zhang, Xudong ; Reichstein, Markus ; Hui, Dafeng</creatorcontrib><description>Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere and atmosphere in forests that are affecting the global C cycle. Current forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation conditions, which carry legacy effects from disturbances and extreme climate events. Our level of understanding from the legacies of these processes on net CO2 fluxes is still limited due to their complexities and their long-term effects. Here, we combined remote sensing, climate, and eddy-covariance flux data to study net ecosystem CO2 exchange (NEE) at 185 forest sites globally. Instead of commonly used non-dynamic statistical methods, we employed a type of recurrent neural network (RNN), called Long Short-Term Memory network (LSTM) that captures information from the vegetation and climate's temporal dynamics. The resulting data-driven model integrates interannual and seasonal variations of climate and vegetation by using Landsat and climate data at each site. The presented LSTM algorithm was able to effectively describe the overall seasonal variability (Nash-Sutcliffe efficiency, NSE = 0.66) and across-site (NSE = 0.42) variations in NEE, while it had less success in predicting specific seasonal and interannual anomalies (NSE = 0.07). This analysis demonstrated that an LSTM approach with embedded climate and vegetation memory effects outperformed a non-dynamic statistical model (i.e. Random Forest) for estimating NEE. Additionally, it is shown that the vegetation mean seasonal cycle embeds most of the information content to realistically explain the spatial and seasonal variations in NEE. These findings show the relevance of capturing memory effects from both climate and vegetation in quantifying spatio-temporal variations in forest NEE.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0211510</identifier><identifier>PMID: 30726269</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural sciences ; Anomalies ; Artificial intelligence ; Atmosphere ; Biogeochemistry ; Biology and Life Sciences ; Biosphere ; Carbon Cycle ; Carbon dioxide ; Carbon Dioxide - analysis ; Carbon Dioxide - metabolism ; Carbon dioxide exchange ; Carbon dioxide flux ; Carbon dioxide variations ; Climate ; Climate and vegetation ; Climate Change ; Climate effects ; Climatic data ; Climatic extremes ; Covariance ; Earth Sciences ; Ecology and Environmental Sciences ; Ecosystem ; Eddy covariance ; Environmental Monitoring ; Fluxes ; Forest ecosystems ; Forestry ; Forests ; Information science ; Laboratories ; Laboratorium voor Geo-informatiekunde en remote sensing ; Laboratory of Geo-information Science and Remote Sensing ; Landsat ; Landsat satellites ; Life Sciences ; Long short-term memory ; Long-term effects ; Mathematical models ; Models, Theoretical ; Neural networks ; Neural Networks, Computer ; PE&RC ; Physical Sciences ; Recurrent neural networks ; Remote sensing ; Respiration ; Seasonal variability ; Seasonal variations ; Seasons ; Sequestering ; Soil conditions ; Soil dynamics ; Statistical methods ; Statistical models ; Temporal variations ; Terrestrial environments ; Vegetation</subject><ispartof>PloS one, 2019-02, Vol.14 (2), p.e0211510-e0211510</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>CC0 - Public Domain Dedication</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c721t-ffc8d94d1faa8c57b1f965a7b04f7fc67fa873a241ccca811877acdd10aef1bf3</citedby><cites>FETCH-LOGICAL-c721t-ffc8d94d1faa8c57b1f965a7b04f7fc67fa873a241ccca811877acdd10aef1bf3</cites><orcidid>0000-0002-1137-103X ; 0000-0002-7615-8870 ; 0000-0003-4974-170X ; 0000-0003-0761-9458 ; 0000-0003-0826-2980 ; 0000-0002-1319-142X ; 0000-0003-3541-672X ; 0000-0002-3147-1281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2176706300/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2176706300?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30726269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02626146$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Hui, Dafeng</contributor><creatorcontrib>Besnard, Simon</creatorcontrib><creatorcontrib>Carvalhais, Nuno</creatorcontrib><creatorcontrib>Arain, M Altaf</creatorcontrib><creatorcontrib>Black, Andrew</creatorcontrib><creatorcontrib>Brede, Benjamin</creatorcontrib><creatorcontrib>Buchmann, Nina</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Clevers, Jan G P W</creatorcontrib><creatorcontrib>Dutrieux, Loïc P</creatorcontrib><creatorcontrib>Gans, Fabian</creatorcontrib><creatorcontrib>Herold, Martin</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Kosugi, Yoshiko</creatorcontrib><creatorcontrib>Knohl, Alexander</creatorcontrib><creatorcontrib>Law, Beverly E</creatorcontrib><creatorcontrib>Paul-Limoges, Eugénie</creatorcontrib><creatorcontrib>Lohila, Annalea</creatorcontrib><creatorcontrib>Merbold, Lutz</creatorcontrib><creatorcontrib>Roupsard, Olivier</creatorcontrib><creatorcontrib>Valentini, Riccardo</creatorcontrib><creatorcontrib>Wolf, Sebastian</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><title>Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere and atmosphere in forests that are affecting the global C cycle. Current forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation conditions, which carry legacy effects from disturbances and extreme climate events. Our level of understanding from the legacies of these processes on net CO2 fluxes is still limited due to their complexities and their long-term effects. Here, we combined remote sensing, climate, and eddy-covariance flux data to study net ecosystem CO2 exchange (NEE) at 185 forest sites globally. Instead of commonly used non-dynamic statistical methods, we employed a type of recurrent neural network (RNN), called Long Short-Term Memory network (LSTM) that captures information from the vegetation and climate's temporal dynamics. The resulting data-driven model integrates interannual and seasonal variations of climate and vegetation by using Landsat and climate data at each site. The presented LSTM algorithm was able to effectively describe the overall seasonal variability (Nash-Sutcliffe efficiency, NSE = 0.66) and across-site (NSE = 0.42) variations in NEE, while it had less success in predicting specific seasonal and interannual anomalies (NSE = 0.07). This analysis demonstrated that an LSTM approach with embedded climate and vegetation memory effects outperformed a non-dynamic statistical model (i.e. Random Forest) for estimating NEE. Additionally, it is shown that the vegetation mean seasonal cycle embeds most of the information content to realistically explain the spatial and seasonal variations in NEE. These findings show the relevance of capturing memory effects from both climate and vegetation in quantifying spatio-temporal variations in forest NEE.</description><subject>Agricultural sciences</subject><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Atmosphere</subject><subject>Biogeochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biosphere</subject><subject>Carbon Cycle</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon dioxide exchange</subject><subject>Carbon dioxide flux</subject><subject>Carbon dioxide variations</subject><subject>Climate</subject><subject>Climate and vegetation</subject><subject>Climate Change</subject><subject>Climate effects</subject><subject>Climatic data</subject><subject>Climatic extremes</subject><subject>Covariance</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Eddy covariance</subject><subject>Environmental Monitoring</subject><subject>Fluxes</subject><subject>Forest ecosystems</subject><subject>Forestry</subject><subject>Forests</subject><subject>Information science</subject><subject>Laboratories</subject><subject>Laboratorium voor Geo-informatiekunde en remote sensing</subject><subject>Laboratory of Geo-information Science and Remote Sensing</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Life Sciences</subject><subject>Long short-term memory</subject><subject>Long-term effects</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>PE&RC</subject><subject>Physical Sciences</subject><subject>Recurrent neural networks</subject><subject>Remote sensing</subject><subject>Respiration</subject><subject>Seasonal variability</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Sequestering</subject><subject>Soil conditions</subject><subject>Soil dynamics</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Temporal variations</subject><subject>Terrestrial environments</subject><subject>Vegetation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEUXCEQLYV_gMASFzgk-Gvt3R6QqghopaBe4Igsr_d5u5FjB3s3Jf8eb5JWbcXpWfbM-L15UxRvCZ4TJsnnVRij126-CR7mmBJSEvysOCU1ozNBMXv-4HxSvEpphXHJKiFeFicMSyqoqE-L3z9gHeIOgbVghoSCRcb1az0A0r5FW-hg0EMfPNJ7RO875GFAYELapQHWaHFNkXXjX0io96hzodEO2RAhDel18cJql-DNsZ4Vv759_bm4nC2vv18tLpYzIykZZtaaqq15S6zWlSllQ2wtSi0bzK20RkirK8k05cQYoytCKim1aVuCNVjSWHZWvD_oblxI6uhMUpRIIbFgGGfE1QHRBr1Sm5hHjDsVdK_2FyF2SsehNw4U4U3LKbAGsOECl5Wsa1pXlWwx1YxD1jo_aN3qDnx2BLzyOpo-7QVd38RJ_HaMyrupbMYmqZJXuKSZ_OXY6tisoTXgh6jdo44ev_j-RnVhqwQTPLuSBT4dBG6e0C4vlmq6w9NqCRdbkrEfj5_F8GfMG1HrPhlwTnsI42RQVZYl57zO0A9PoP-3kR9QJoaUItj7DghWUyzvWGqKpTrGMtPePRz6nnSXQ_YPKHzicQ</recordid><startdate>20190206</startdate><enddate>20190206</enddate><creator>Besnard, Simon</creator><creator>Carvalhais, Nuno</creator><creator>Arain, M Altaf</creator><creator>Black, Andrew</creator><creator>Brede, Benjamin</creator><creator>Buchmann, Nina</creator><creator>Chen, Jiquan</creator><creator>Clevers, Jan G P W</creator><creator>Dutrieux, Loïc P</creator><creator>Gans, Fabian</creator><creator>Herold, Martin</creator><creator>Jung, Martin</creator><creator>Kosugi, Yoshiko</creator><creator>Knohl, Alexander</creator><creator>Law, Beverly E</creator><creator>Paul-Limoges, Eugénie</creator><creator>Lohila, Annalea</creator><creator>Merbold, Lutz</creator><creator>Roupsard, Olivier</creator><creator>Valentini, Riccardo</creator><creator>Wolf, Sebastian</creator><creator>Zhang, Xudong</creator><creator>Reichstein, Markus</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>QVL</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1137-103X</orcidid><orcidid>https://orcid.org/0000-0002-7615-8870</orcidid><orcidid>https://orcid.org/0000-0003-4974-170X</orcidid><orcidid>https://orcid.org/0000-0003-0761-9458</orcidid><orcidid>https://orcid.org/0000-0003-0826-2980</orcidid><orcidid>https://orcid.org/0000-0002-1319-142X</orcidid><orcidid>https://orcid.org/0000-0003-3541-672X</orcidid><orcidid>https://orcid.org/0000-0002-3147-1281</orcidid></search><sort><creationdate>20190206</creationdate><title>Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests</title><author>Besnard, Simon ; Carvalhais, Nuno ; Arain, M Altaf ; Black, Andrew ; Brede, Benjamin ; Buchmann, Nina ; Chen, Jiquan ; Clevers, Jan G P W ; Dutrieux, Loïc P ; Gans, Fabian ; Herold, Martin ; Jung, Martin ; Kosugi, Yoshiko ; Knohl, Alexander ; Law, Beverly E ; Paul-Limoges, Eugénie ; Lohila, Annalea ; Merbold, Lutz ; Roupsard, Olivier ; Valentini, Riccardo ; Wolf, Sebastian ; Zhang, Xudong ; Reichstein, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c721t-ffc8d94d1faa8c57b1f965a7b04f7fc67fa873a241ccca811877acdd10aef1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural sciences</topic><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Atmosphere</topic><topic>Biogeochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biosphere</topic><topic>Carbon Cycle</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon dioxide exchange</topic><topic>Carbon dioxide flux</topic><topic>Carbon dioxide variations</topic><topic>Climate</topic><topic>Climate and vegetation</topic><topic>Climate Change</topic><topic>Climate effects</topic><topic>Climatic data</topic><topic>Climatic extremes</topic><topic>Covariance</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Eddy covariance</topic><topic>Environmental Monitoring</topic><topic>Fluxes</topic><topic>Forest ecosystems</topic><topic>Forestry</topic><topic>Forests</topic><topic>Information science</topic><topic>Laboratories</topic><topic>Laboratorium voor Geo-informatiekunde en remote sensing</topic><topic>Laboratory of Geo-information Science and Remote Sensing</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Life Sciences</topic><topic>Long short-term memory</topic><topic>Long-term effects</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>PE&RC</topic><topic>Physical Sciences</topic><topic>Recurrent neural networks</topic><topic>Remote sensing</topic><topic>Respiration</topic><topic>Seasonal variability</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Sequestering</topic><topic>Soil conditions</topic><topic>Soil dynamics</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Temporal variations</topic><topic>Terrestrial environments</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besnard, Simon</creatorcontrib><creatorcontrib>Carvalhais, Nuno</creatorcontrib><creatorcontrib>Arain, M Altaf</creatorcontrib><creatorcontrib>Black, Andrew</creatorcontrib><creatorcontrib>Brede, Benjamin</creatorcontrib><creatorcontrib>Buchmann, Nina</creatorcontrib><creatorcontrib>Chen, Jiquan</creatorcontrib><creatorcontrib>Clevers, Jan G P W</creatorcontrib><creatorcontrib>Dutrieux, Loïc P</creatorcontrib><creatorcontrib>Gans, Fabian</creatorcontrib><creatorcontrib>Herold, Martin</creatorcontrib><creatorcontrib>Jung, Martin</creatorcontrib><creatorcontrib>Kosugi, Yoshiko</creatorcontrib><creatorcontrib>Knohl, Alexander</creatorcontrib><creatorcontrib>Law, Beverly E</creatorcontrib><creatorcontrib>Paul-Limoges, Eugénie</creatorcontrib><creatorcontrib>Lohila, Annalea</creatorcontrib><creatorcontrib>Merbold, Lutz</creatorcontrib><creatorcontrib>Roupsard, Olivier</creatorcontrib><creatorcontrib>Valentini, Riccardo</creatorcontrib><creatorcontrib>Wolf, Sebastian</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Reichstein, Markus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besnard, Simon</au><au>Carvalhais, Nuno</au><au>Arain, M Altaf</au><au>Black, Andrew</au><au>Brede, Benjamin</au><au>Buchmann, Nina</au><au>Chen, Jiquan</au><au>Clevers, Jan G P W</au><au>Dutrieux, Loïc P</au><au>Gans, Fabian</au><au>Herold, Martin</au><au>Jung, Martin</au><au>Kosugi, Yoshiko</au><au>Knohl, Alexander</au><au>Law, Beverly E</au><au>Paul-Limoges, Eugénie</au><au>Lohila, Annalea</au><au>Merbold, Lutz</au><au>Roupsard, Olivier</au><au>Valentini, Riccardo</au><au>Wolf, Sebastian</au><au>Zhang, Xudong</au><au>Reichstein, Markus</au><au>Hui, Dafeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-02-06</date><risdate>2019</risdate><volume>14</volume><issue>2</issue><spage>e0211510</spage><epage>e0211510</epage><pages>e0211510-e0211510</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Forests play a crucial role in the global carbon (C) cycle by storing and sequestering a substantial amount of C in the terrestrial biosphere. Due to temporal dynamics in climate and vegetation activity, there are significant regional variations in carbon dioxide (CO2) fluxes between the biosphere and atmosphere in forests that are affecting the global C cycle. Current forest CO2 flux dynamics are controlled by instantaneous climate, soil, and vegetation conditions, which carry legacy effects from disturbances and extreme climate events. Our level of understanding from the legacies of these processes on net CO2 fluxes is still limited due to their complexities and their long-term effects. Here, we combined remote sensing, climate, and eddy-covariance flux data to study net ecosystem CO2 exchange (NEE) at 185 forest sites globally. Instead of commonly used non-dynamic statistical methods, we employed a type of recurrent neural network (RNN), called Long Short-Term Memory network (LSTM) that captures information from the vegetation and climate's temporal dynamics. The resulting data-driven model integrates interannual and seasonal variations of climate and vegetation by using Landsat and climate data at each site. The presented LSTM algorithm was able to effectively describe the overall seasonal variability (Nash-Sutcliffe efficiency, NSE = 0.66) and across-site (NSE = 0.42) variations in NEE, while it had less success in predicting specific seasonal and interannual anomalies (NSE = 0.07). This analysis demonstrated that an LSTM approach with embedded climate and vegetation memory effects outperformed a non-dynamic statistical model (i.e. Random Forest) for estimating NEE. Additionally, it is shown that the vegetation mean seasonal cycle embeds most of the information content to realistically explain the spatial and seasonal variations in NEE. These findings show the relevance of capturing memory effects from both climate and vegetation in quantifying spatio-temporal variations in forest NEE.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30726269</pmid><doi>10.1371/journal.pone.0211510</doi><orcidid>https://orcid.org/0000-0002-1137-103X</orcidid><orcidid>https://orcid.org/0000-0002-7615-8870</orcidid><orcidid>https://orcid.org/0000-0003-4974-170X</orcidid><orcidid>https://orcid.org/0000-0003-0761-9458</orcidid><orcidid>https://orcid.org/0000-0003-0826-2980</orcidid><orcidid>https://orcid.org/0000-0002-1319-142X</orcidid><orcidid>https://orcid.org/0000-0003-3541-672X</orcidid><orcidid>https://orcid.org/0000-0002-3147-1281</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2019-02, Vol.14 (2), p.e0211510-e0211510 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2176706300 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Agricultural sciences Anomalies Artificial intelligence Atmosphere Biogeochemistry Biology and Life Sciences Biosphere Carbon Cycle Carbon dioxide Carbon Dioxide - analysis Carbon Dioxide - metabolism Carbon dioxide exchange Carbon dioxide flux Carbon dioxide variations Climate Climate and vegetation Climate Change Climate effects Climatic data Climatic extremes Covariance Earth Sciences Ecology and Environmental Sciences Ecosystem Eddy covariance Environmental Monitoring Fluxes Forest ecosystems Forestry Forests Information science Laboratories Laboratorium voor Geo-informatiekunde en remote sensing Laboratory of Geo-information Science and Remote Sensing Landsat Landsat satellites Life Sciences Long short-term memory Long-term effects Mathematical models Models, Theoretical Neural networks Neural Networks, Computer PE&RC Physical Sciences Recurrent neural networks Remote sensing Respiration Seasonal variability Seasonal variations Seasons Sequestering Soil conditions Soil dynamics Statistical methods Statistical models Temporal variations Terrestrial environments Vegetation |
title | Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20effects%20of%20climate%20and%20vegetation%20affecting%20net%20ecosystem%20CO2%20fluxes%20in%20global%20forests&rft.jtitle=PloS%20one&rft.au=Besnard,%20Simon&rft.date=2019-02-06&rft.volume=14&rft.issue=2&rft.spage=e0211510&rft.epage=e0211510&rft.pages=e0211510-e0211510&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0211510&rft_dat=%3Cproquest_plos_%3E2176706300%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c721t-ffc8d94d1faa8c57b1f965a7b04f7fc67fa873a241ccca811877acdd10aef1bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2176706300&rft_id=info:pmid/30726269&rfr_iscdi=true |