Loading…

The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study

Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-02, Vol.14 (2), p.e0211651-e0211651
Main Authors: Xu, You, Gissberg, Olof, Pabon-Martinez, Y Vladimir, Wengel, Jesper, Lundin, Karin E, Smith, C I Edvard, Zain, Rula, Nilsson, Lennart, Villa, Alessandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c780t-50f5d817772c9fbea5450175e761eece3b719b2416cd1647d5c9e232c858a883
cites cdi_FETCH-LOGICAL-c780t-50f5d817772c9fbea5450175e761eece3b719b2416cd1647d5c9e232c858a883
container_end_page e0211651
container_issue 2
container_start_page e0211651
container_title PloS one
container_volume 14
creator Xu, You
Gissberg, Olof
Pabon-Martinez, Y Vladimir
Wengel, Jesper
Lundin, Karin E
Smith, C I Edvard
Zain, Rula
Nilsson, Lennart
Villa, Alessandra
description Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics simulations and electrophoresis mobility shift assays to elucidate the relation between helical structure and affinity for LNA-containing oligonucleotides. In particular, we have studied how LNA substitutions in the polypyrimidine strand of a duplex (thus forming a hetero duplex, i.e. a duplex with a DNA polypurine strand and an LNA/DNA polypyrimidine strand) enhance triplex formation. Based on seven polypyrimidine single strand oligonucleotides, having LNAs in different positions and quantities, we show that alternating LNA with one or more non-modified DNA nucleotides pre-organizes the hetero duplex toward a triple-helical-like conformation. This in turn promotes triplex formation, while consecutive LNAs distort the duplex structure disfavoring triplex formation. The results support the hypothesis that a pre-organization in the hetero duplex structure enhances the binding of triplex forming oligonucleotides. Our findings may serve as a criterion in the design of new tools for efficient oligonucleotide hybridization.
doi_str_mv 10.1371/journal.pone.0211651
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2178970142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573808988</galeid><doaj_id>oai_doaj_org_article_55db4bd3254c49929b13758fa8dd46a1</doaj_id><sourcerecordid>A573808988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c780t-50f5d817772c9fbea5450175e761eece3b719b2416cd1647d5c9e232c858a883</originalsourceid><addsrcrecordid>eNqNk19rFDEUxQdRrFa_gWhAEH3YdZJMJhkfhFL8UygUtPgaMsmd3bTZyZpktH3yq5vpTmtHKkgeEm5-5wxzbm5RPMPlElOO3575IfTKLbe-h2VJMK4Zvlc8wg0li5qU9P6t817xOMazsmRU1PXDYo-WnFHckEfFr9M1INVaZ9Ml8h1yXp-DQf2gHViNlLYGeWdX_qrikzUQUfJoG2ARUxh0GgKglE2MH1oHaA3OXrxDB2jjHejBqYCi3eQ9Wd8j1RvU2t7YfoViGszlk-JBp1yEp9O-X5x-_HB6-HlxfPLp6PDgeKG5KNOClR0zAnPOiW66FhSrWIk5A15jAA205bhpSYVrbXBdccN0A4QSLZhQQtD94sXOdut8lFN0URLMRcNLXJFMHO0I49WZ3Aa7UeFSemXlVcGHlVQh2RyCZMy0VWsoYZWumoY0bW4IE50SxlS1wtlrsfOKP2E7tDO3qXSeTyArkZtDM9_8k98Gb_6IroW4Kgkngo3a99OfDe0GjIY-BeXmFrOb3q7lyv-QNeUEV002eD0ZBP99gJjkxkYNzqke_DBmJDjDOcMxxZd_oXcnOVErlcOyfefzd_VoKg8Yp6IUzVVHlndQeRnYWJ3fdGdzfSZ4MxNkJsFFWqkhRnn09cv_syff5uyrW-walEvr6N0wvtc4B6sdqIOPMUB3EzIu5TiS12nIcSTlNJJZ9vx2g25E1zNIfwM3XDN-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178970142</pqid></control><display><type>article</type><title>The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study</title><source>PubMed (Medline)</source><source>Publicly Available Content (ProQuest)</source><creator>Xu, You ; Gissberg, Olof ; Pabon-Martinez, Y Vladimir ; Wengel, Jesper ; Lundin, Karin E ; Smith, C I Edvard ; Zain, Rula ; Nilsson, Lennart ; Villa, Alessandra</creator><contributor>Salsbury, Freddie</contributor><creatorcontrib>Xu, You ; Gissberg, Olof ; Pabon-Martinez, Y Vladimir ; Wengel, Jesper ; Lundin, Karin E ; Smith, C I Edvard ; Zain, Rula ; Nilsson, Lennart ; Villa, Alessandra ; Salsbury, Freddie</creatorcontrib><description>Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics simulations and electrophoresis mobility shift assays to elucidate the relation between helical structure and affinity for LNA-containing oligonucleotides. In particular, we have studied how LNA substitutions in the polypyrimidine strand of a duplex (thus forming a hetero duplex, i.e. a duplex with a DNA polypurine strand and an LNA/DNA polypyrimidine strand) enhance triplex formation. Based on seven polypyrimidine single strand oligonucleotides, having LNAs in different positions and quantities, we show that alternating LNA with one or more non-modified DNA nucleotides pre-organizes the hetero duplex toward a triple-helical-like conformation. This in turn promotes triplex formation, while consecutive LNAs distort the duplex structure disfavoring triplex formation. The results support the hypothesis that a pre-organization in the hetero duplex structure enhances the binding of triplex forming oligonucleotides. Our findings may serve as a criterion in the design of new tools for efficient oligonucleotide hybridization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0211651</identifier><identifier>PMID: 30753192</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Analysis ; Base Pairing ; Base pairs ; Base Sequence ; Binding ; Biological activity ; Biology and Life Sciences ; Computational chemistry ; Conformation ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Electrophoresis ; Electrophoretic mobility ; Electrophoretic Mobility Shift Assay ; Gene sequencing ; Hybridization ; Laboratories ; Medicin och hälsovetenskap ; Medicine ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular structure ; Nucleic Acid Conformation ; Nucleic acids ; Nucleotide sequence ; Nucleotides ; Nutrition ; Oligonucleotides ; Oligonucleotides - chemistry ; Physical Sciences ; Physics ; Research and Analysis Methods ; Software ; Technology application</subject><ispartof>PloS one, 2019-02, Vol.14 (2), p.e0211651-e0211651</ispartof><rights>COPYRIGHT 2019 Public Library of Science</rights><rights>2019 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 Xu et al 2019 Xu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c780t-50f5d817772c9fbea5450175e761eece3b719b2416cd1647d5c9e232c858a883</citedby><cites>FETCH-LOGICAL-c780t-50f5d817772c9fbea5450175e761eece3b719b2416cd1647d5c9e232c858a883</cites><orcidid>0000-0002-9573-0326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2178970142/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2178970142?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30753192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:140272853$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Salsbury, Freddie</contributor><creatorcontrib>Xu, You</creatorcontrib><creatorcontrib>Gissberg, Olof</creatorcontrib><creatorcontrib>Pabon-Martinez, Y Vladimir</creatorcontrib><creatorcontrib>Wengel, Jesper</creatorcontrib><creatorcontrib>Lundin, Karin E</creatorcontrib><creatorcontrib>Smith, C I Edvard</creatorcontrib><creatorcontrib>Zain, Rula</creatorcontrib><creatorcontrib>Nilsson, Lennart</creatorcontrib><creatorcontrib>Villa, Alessandra</creatorcontrib><title>The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics simulations and electrophoresis mobility shift assays to elucidate the relation between helical structure and affinity for LNA-containing oligonucleotides. In particular, we have studied how LNA substitutions in the polypyrimidine strand of a duplex (thus forming a hetero duplex, i.e. a duplex with a DNA polypurine strand and an LNA/DNA polypyrimidine strand) enhance triplex formation. Based on seven polypyrimidine single strand oligonucleotides, having LNAs in different positions and quantities, we show that alternating LNA with one or more non-modified DNA nucleotides pre-organizes the hetero duplex toward a triple-helical-like conformation. This in turn promotes triplex formation, while consecutive LNAs distort the duplex structure disfavoring triplex formation. The results support the hypothesis that a pre-organization in the hetero duplex structure enhances the binding of triplex forming oligonucleotides. Our findings may serve as a criterion in the design of new tools for efficient oligonucleotide hybridization.</description><subject>Acids</subject><subject>Analysis</subject><subject>Base Pairing</subject><subject>Base pairs</subject><subject>Base Sequence</subject><subject>Binding</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Computational chemistry</subject><subject>Conformation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electrophoresis</subject><subject>Electrophoretic mobility</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Gene sequencing</subject><subject>Hybridization</subject><subject>Laboratories</subject><subject>Medicin och hälsovetenskap</subject><subject>Medicine</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Nutrition</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides - chemistry</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Technology application</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19rFDEUxQdRrFa_gWhAEH3YdZJMJhkfhFL8UygUtPgaMsmd3bTZyZpktH3yq5vpTmtHKkgeEm5-5wxzbm5RPMPlElOO3575IfTKLbe-h2VJMK4Zvlc8wg0li5qU9P6t817xOMazsmRU1PXDYo-WnFHckEfFr9M1INVaZ9Ml8h1yXp-DQf2gHViNlLYGeWdX_qrikzUQUfJoG2ARUxh0GgKglE2MH1oHaA3OXrxDB2jjHejBqYCi3eQ9Wd8j1RvU2t7YfoViGszlk-JBp1yEp9O-X5x-_HB6-HlxfPLp6PDgeKG5KNOClR0zAnPOiW66FhSrWIk5A15jAA205bhpSYVrbXBdccN0A4QSLZhQQtD94sXOdut8lFN0URLMRcNLXJFMHO0I49WZ3Aa7UeFSemXlVcGHlVQh2RyCZMy0VWsoYZWumoY0bW4IE50SxlS1wtlrsfOKP2E7tDO3qXSeTyArkZtDM9_8k98Gb_6IroW4Kgkngo3a99OfDe0GjIY-BeXmFrOb3q7lyv-QNeUEV002eD0ZBP99gJjkxkYNzqke_DBmJDjDOcMxxZd_oXcnOVErlcOyfefzd_VoKg8Yp6IUzVVHlndQeRnYWJ3fdGdzfSZ4MxNkJsFFWqkhRnn09cv_syff5uyrW-walEvr6N0wvtc4B6sdqIOPMUB3EzIu5TiS12nIcSTlNJJZ9vx2g25E1zNIfwM3XDN-</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Xu, You</creator><creator>Gissberg, Olof</creator><creator>Pabon-Martinez, Y Vladimir</creator><creator>Wengel, Jesper</creator><creator>Lundin, Karin E</creator><creator>Smith, C I Edvard</creator><creator>Zain, Rula</creator><creator>Nilsson, Lennart</creator><creator>Villa, Alessandra</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9573-0326</orcidid></search><sort><creationdate>20190212</creationdate><title>The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study</title><author>Xu, You ; Gissberg, Olof ; Pabon-Martinez, Y Vladimir ; Wengel, Jesper ; Lundin, Karin E ; Smith, C I Edvard ; Zain, Rula ; Nilsson, Lennart ; Villa, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c780t-50f5d817772c9fbea5450175e761eece3b719b2416cd1647d5c9e232c858a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Base Pairing</topic><topic>Base pairs</topic><topic>Base Sequence</topic><topic>Binding</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Computational chemistry</topic><topic>Conformation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electrophoresis</topic><topic>Electrophoretic mobility</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Gene sequencing</topic><topic>Hybridization</topic><topic>Laboratories</topic><topic>Medicin och hälsovetenskap</topic><topic>Medicine</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Nutrition</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides - chemistry</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, You</creatorcontrib><creatorcontrib>Gissberg, Olof</creatorcontrib><creatorcontrib>Pabon-Martinez, Y Vladimir</creatorcontrib><creatorcontrib>Wengel, Jesper</creatorcontrib><creatorcontrib>Lundin, Karin E</creatorcontrib><creatorcontrib>Smith, C I Edvard</creatorcontrib><creatorcontrib>Zain, Rula</creatorcontrib><creatorcontrib>Nilsson, Lennart</creatorcontrib><creatorcontrib>Villa, Alessandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, You</au><au>Gissberg, Olof</au><au>Pabon-Martinez, Y Vladimir</au><au>Wengel, Jesper</au><au>Lundin, Karin E</au><au>Smith, C I Edvard</au><au>Zain, Rula</au><au>Nilsson, Lennart</au><au>Villa, Alessandra</au><au>Salsbury, Freddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2019-02-12</date><risdate>2019</risdate><volume>14</volume><issue>2</issue><spage>e0211651</spage><epage>e0211651</epage><pages>e0211651-e0211651</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics simulations and electrophoresis mobility shift assays to elucidate the relation between helical structure and affinity for LNA-containing oligonucleotides. In particular, we have studied how LNA substitutions in the polypyrimidine strand of a duplex (thus forming a hetero duplex, i.e. a duplex with a DNA polypurine strand and an LNA/DNA polypyrimidine strand) enhance triplex formation. Based on seven polypyrimidine single strand oligonucleotides, having LNAs in different positions and quantities, we show that alternating LNA with one or more non-modified DNA nucleotides pre-organizes the hetero duplex toward a triple-helical-like conformation. This in turn promotes triplex formation, while consecutive LNAs distort the duplex structure disfavoring triplex formation. The results support the hypothesis that a pre-organization in the hetero duplex structure enhances the binding of triplex forming oligonucleotides. Our findings may serve as a criterion in the design of new tools for efficient oligonucleotide hybridization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30753192</pmid><doi>10.1371/journal.pone.0211651</doi><tpages>e0211651</tpages><orcidid>https://orcid.org/0000-0002-9573-0326</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2019-02, Vol.14 (2), p.e0211651-e0211651
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2178970142
source PubMed (Medline); Publicly Available Content (ProQuest)
subjects Acids
Analysis
Base Pairing
Base pairs
Base Sequence
Binding
Biological activity
Biology and Life Sciences
Computational chemistry
Conformation
Deoxyribonucleic acid
DNA
DNA - chemistry
Electrophoresis
Electrophoretic mobility
Electrophoretic Mobility Shift Assay
Gene sequencing
Hybridization
Laboratories
Medicin och hälsovetenskap
Medicine
Molecular dynamics
Molecular Dynamics Simulation
Molecular structure
Nucleic Acid Conformation
Nucleic acids
Nucleotide sequence
Nucleotides
Nutrition
Oligonucleotides
Oligonucleotides - chemistry
Physical Sciences
Physics
Research and Analysis Methods
Software
Technology application
title The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ability%20of%20locked%20nucleic%20acid%20oligonucleotides%20to%20pre-structure%20the%20double%20helix:%20A%20molecular%20simulation%20and%20binding%20study&rft.jtitle=PloS%20one&rft.au=Xu,%20You&rft.date=2019-02-12&rft.volume=14&rft.issue=2&rft.spage=e0211651&rft.epage=e0211651&rft.pages=e0211651-e0211651&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0211651&rft_dat=%3Cgale_plos_%3EA573808988%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c780t-50f5d817772c9fbea5450175e761eece3b719b2416cd1647d5c9e232c858a883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178970142&rft_id=info:pmid/30753192&rft_galeid=A573808988&rfr_iscdi=true