Loading…
Construction of a pathway to C50-ε-carotene
Substrate tolerance of bacterial cyclases has been demonstrated in various contexts, but little is known about that of plant cyclases. Here, we tested two plant ε-cyclases to convert C50-lycopene, which we previously established by rounds of directed evolution. Unlike bacterial β-cyclases, two-end c...
Saved in:
Published in: | PloS one 2019-05, Vol.14 (5), p.e0216729-e0216729 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Substrate tolerance of bacterial cyclases has been demonstrated in various contexts, but little is known about that of plant cyclases. Here, we tested two plant ε-cyclases to convert C50-lycopene, which we previously established by rounds of directed evolution. Unlike bacterial β-cyclases, two-end cyclase from lettuce exhibited complete specificity against this molecule, indicating that this enzyme has some mechanism that exerts size-specificity. Arabidopsis one-end cyclase At-y2 showed detectable activity to C50-lycopene. Interestingly, we found that it functions as a two-end cyclase in a C50 context. Based on this observation, a possible model for substrate discrimination of this enzyme is proposed. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0216729 |