Loading…

Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model

Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from a...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2019-06, Vol.14 (6), p.e0218626-e0218626
Main Authors: Song, Zhanguo, Guo, Yanyong, Wu, Yao, Ma, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from an urban freeway in Edmonton, Canada. A seasonal autoregressive integrated moving average plus seasonal discrete grey model structure (SARIMA-SDGM) was proposed to perform the traffic speed prediction. The model performance of SARIMA-SDGM model was compared with that of the seasonal autoregressive integrated moving average (SARIMA) model, seasonal discrete grey model (SDGM), artificial neural network (ANN) model, and support vector regression (SVR) model. The results showed that SARIMA-SDGM model performs best with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE). The traffic speed prediction accuracy under different time intervals were compared based on the SARIMA-SDGM model. The results showed that the prediction accuracy improves with the increase in time interval. In addition, when the time interval is greater than 10 min, the prediction results yield stable prediction accuracy.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0218626